A quasi-tree expansion of the Krushkal polynomial

Abstract We introduce a generalization of the Krushkal polynomial to nonorientable surfaces, and prove that this polynomial has a natural quasi-tree expansion. This generalized Krushkal polynomial contains the Bollobas–Riordan polynomial of a (possibly nonorientable) ribbon graph as a specialization. The quasi-tree expansion proven here then extends the recent quasi-tree expansions of the Bollobas–Riordan polynomial deduced in the oriented case by A. Champanerkar et al. and in the more general unoriented case by E. Dewey and F. Vignes-Tourneret. The generalized Krushkal polynomial also contains the Las Vergnas polynomial of a cellulation of a surface as a specialization; we use this fact to deduce a quasi-tree expansion for the Las Vergnas polynomial.

[1]  S. Chmutov,et al.  Polynomial invariants of graphs on surfaces , 2010, 1012.5053.

[2]  Michel Las Vergnas,et al.  On the Tutte Polynomial of a Morphism of Matroids , 1980 .

[3]  N. Stoltzfus,et al.  Graphs on surfaces and Khovanov homology , 2007, 0705.3453.

[4]  Béla Bollobás,et al.  A polynomial of graphs on surfaces , 2002 .

[5]  Sergei Chmutov,et al.  Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial , 2007, J. Comb. Theory, Ser. B.

[6]  Vyacheslav Krushkal,et al.  Graphs, Links, and Duality on Surfaces , 2009, Combinatorics, Probability and Computing.

[7]  Fabien Vignes-Tourneret,et al.  Non-orientable quasi-trees for the Bollobás-Riordan polynomial , 2011, Eur. J. Comb..

[8]  Vyacheslav Krushkal,et al.  A Polynomial Invariant and Duality for Triangulations , 2010, Electron. J. Comb..

[9]  James G. Oxley,et al.  Matroid theory , 1992 .

[10]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[11]  Abhijit Champanerkar,et al.  Quasi‐tree expansion for the Bollobás–Riordan–Tutte polynomial , 2007, 0705.3458.

[12]  Iain Moffatt,et al.  Partial duality and Bollobás and Riordan's ribbon graph polynomial , 2008, Discret. Math..

[13]  S. Chmutov,et al.  Arrow ribbon graphs , 2011, 1107.3237.

[14]  Joanna A. Ellis-Monaghan,et al.  Twisted duality for embedded graphs , 2009, 0906.5557.

[15]  Iain Moffatt,et al.  Twisted duality and polynomials of embedded graphs , 2009 .