Magnetic resonance imaging in the radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration

Purpose: To assess the feasibility, and potential implications, of using intra-prostatic fiducial markers, rather than bony landmarks, for the co-registration of computed tomography (CT) and magnetic resonance (MR) images in the radiation treatment planning of localized prostate cancer. Methods: All men treated with conformal therapy for localized prostate cancer underwent routine pre-treatment insertion of prostatic fiducial markers to assist with gross target volume (GTV) delineation and to identify prostate positioning during therapy. Six of these men were selected for investigation. Phantom MRI measurements were obtained to quantify image distortion, to determine the most suitable gold alloy marker composition, and to identify the spin-echo sequences that optimized both marker identification and the contrast between the prostate and the surrounding tissues. The GTV for each patient was contoured independently by three radiation oncologists on axial planning CT slices, and on axial MRI slices fused to the CT slices by matching the implanted fiducial markers. From each set of contours the scan common volume (SCV), and the scan encompassing volume (SEV), were obtained. The ratio SEV/SCV for a given scan is a measure of interobserver variation in contouring. For each of the 18 patient–observer combinations the observer common volume (OCV) and the observer encompassing volume (OEV) was obtained. The ratio OEV/OCV for a given patient–observer combination is a measure of the inter-modality variation in contouring. The distance from the treatment planning isocenter to the prostate contours was measured and the discrepancy between the CTand the MR-defined contour recorded. The discrepancies between the CTand MR-defined contours of the posterior prostate were recorded in the sagittal plane at 1-cm intervals above and below the isocenter. Results: Phantom measurements demonstrated trivial image distortion within the required field of view, and an 18K Au/Cu alloy to be the marker composition most suitable for CT–MRI image fusion purposes. Inter-observer variation in prostate contouring was significantly less for MR compared to CT. The mean SEV/SCV ratio was 1.58 (confidence interval (CI): 1.47–1.69) for CT scans and 1.37 (CI: 1.33–1.41) for MR scans (paired t-test; P 1⁄4 0:036). The overall magnitude of contoured GTV was similar for MR and CT; however, there were spatial discrepancies in contouring between the two modalities. The greatest systematic discrepancy was at the posterior apical prostate border, which was defined 3.6 mm (SD 3.5 mm) more posterior on MRthan CT-defined contouring. Conclusions: Prostate contouring on MR is associated with less inter-observer variation than on CT. In addition, we have demonstrated the feasibility of using intra-prostatic fiducial markers, rather than bony landmarks, for the co-registration of CT and MR images in the radiation treatment planning of localized prostate cancer. This technique, together with on-line correction of treatment set-up according to the fiducial marker position on electronic portal imaging, may enable a reduction in the planning target volume (PTV) margin needed to account for inter-observer error in target delineation, and for prostate motion. q 2002 Elsevier Science Ireland Ltd. All rights reserved.

[1]  C. Fiorino,et al.  Intra- and inter-observer variability in contouring prostate and seminal vesicles: implications for conformal treatment planning. , 1998, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[2]  D P Dearnaley,et al.  Evaluating the effect of rectal distension and rectal movement on prostate gland position using cine MRI. , 1999, International journal of radiation oncology, biology, physics.

[3]  M van Herk,et al.  Definition of the prostate in CT and MRI: a multi-observer study. , 1999, International journal of radiation oncology, biology, physics.

[4]  Randall K Ten Haken,et al.  Daily prostate targeting using implanted radiopaque markers. , 2001, International journal of radiation oncology, biology, physics.

[5]  C. Pelizzari,et al.  Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. , 1995, International journal of radiation oncology, biology, physics.

[6]  D. Dearnaley,et al.  Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial , 1999, The Lancet.

[7]  J Pouliot,et al.  Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: a clinical study. , 1997, International journal of radiation oncology, biology, physics.

[8]  E Bellon,et al.  The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer. , 1999, International journal of radiation oncology, biology, physics.

[9]  D P Dearnaley,et al.  Radiotherapy planning of the pelvis using distortion corrected MR images: the removal of system distortions. , 2000, Physics in medicine and biology.

[10]  H Alasti,et al.  Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. , 2001, International journal of radiation oncology, biology, physics.

[11]  J A Antolak,et al.  Prostate target volume variations during a course of radiotherapy. , 1998, International journal of radiation oncology, biology, physics.

[12]  H. Hricak,et al.  Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. , 1996, International journal of radiation oncology, biology, physics.

[13]  D. Dearnaley,et al.  Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. , 1997, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[14]  G J Kutcher,et al.  Late rectal bleeding after conformal radiotherapy of prostate cancer. II. Volume effects and dose-volume histograms. , 2001, International journal of radiation oncology, biology, physics.

[15]  J Szanto,et al.  Respiratory-induced prostate motion: quantification and characterization. , 2000, International journal of radiation oncology, biology, physics.

[16]  C. Catton,et al.  Portal film analysis of an escalated dose conformal prostatic irradiation protocol using fiducial markers and portal images to confirm target organ and isocentre position , 1998 .

[17]  G Starkschall,et al.  Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[18]  G L Sannazzari,et al.  CT-MRI image fusion for delineation of volumes in three-dimensional conformal radiation therapy in the treatment of localized prostate cancer. , 2002, The British journal of radiology.

[19]  J J Prete,et al.  Intraobserver and interobserver variability of MR imaging- and CT-derived prostate volumes after transperineal interstitial permanent prostate brachytherapy. , 1998, Radiology.

[20]  L Verhey,et al.  Static field intensity modulation to treat a dominant intra-prostatic lesion to 90 Gy compared to seven field 3-dimensional radiotherapy. , 1999, International journal of radiation oncology, biology, physics.

[21]  G E Hanks,et al.  Initial clinical assessment of CT-MRI image fusion software in localization of the prostate for 3D conformal radiation therapy. , 1997, International journal of radiation oncology, biology, physics.

[22]  D. Johnston,et al.  Detailed mapping of prostate carcinoma foci , 2000, Cancer.