Size and shape control of GaAs nanowires grown by metalorganic vapor phase epitaxy using tertiarybutylarsine

Au-catalyzed self-assembly of GaAs nanowires on (1¯1¯1¯)B GaAs by metalorganic vapor phase epitaxy is reported between 375 and 500°C, using tertiarybutylarsine and trimethylgallium in H2. The nanowires are [1¯1¯1¯]B aligned and kink-free. Below 425°C the nanowires have narrow base diameter distributions, closely matching the size (∼60nm) of the Au nanoparticles at their tip (no tapering). Above 425°C the nanowires show a hexagonal-based pyramidal shape with base edges normal to the ⟨2¯11⟩ in-plane substrate directions and base diameters which increase exponentially with temperature, indicating a kinetics limited growth along the nanowire sidewalls. Activation energies in the range of ∼20–23kcal∕mol were estimated for growth along both the sidewalls and the [1¯1¯1¯]B direction.

[1]  M. Borgström,et al.  Size- and shape-controlled GaAs nano-whiskers grown by MOVPE: a growth study , 2004 .

[2]  L. Samuelson,et al.  Infrared photodetectors in heterostructure nanowires. , 2006, Nano letters.

[3]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[4]  Lars Samuelson,et al.  Size-, shape-, and position-controlled GaAs nano-whiskers , 2001 .

[5]  Harry E. Ruda,et al.  Growth of silicon nanowires via gold/silane vapor–liquid-solid reaction , 1997 .

[6]  H. Gotoh,et al.  GaAs∕AlGaAs nanowires capped with AlGaAs layers on GaAs(311)B substrates , 2004 .

[7]  Elisabeth Müller,et al.  Optically bright quantum dots in single Nanowires. , 2005, Nano letters.

[8]  S. Denbaars,et al.  Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD , 1986 .

[9]  Takashi Fukui,et al.  Catalyst-free selective-area MOVPE of semiconductor nanowires on (111)B oriented substrates , 2004 .

[10]  Lars Samuelson,et al.  Single-electron transistors in heterostructure nanowires. , 2003 .

[11]  L. Samuelson,et al.  Growth and Optical Properties of Strained GaAs−GaxIn1-xP Core−Shell Nanowires , 2005 .

[12]  Lars Samuelson,et al.  Nanowire single-electron memory. , 2005, Nano letters.

[13]  Kenji Hiruma,et al.  Growth and optical properties of nanometer‐scale GaAs and InAs whiskers , 1995 .

[14]  Lars Samuelson,et al.  Growth of one-dimensional nanostructures in MOVPE , 2004 .

[15]  L. Samuelson,et al.  Mass transport model for semiconductor nanowire growth. , 2005, The journal of physical chemistry. B.

[16]  Yoshiyasu Ito,et al.  Small-Angle X-Ray Scattering Method to Determine the Size Distribution of Gold Nanoparticles Chemisorbed by Thiol Ligands , 2004 .

[17]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[18]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[19]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[20]  Harry E. Ruda,et al.  Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy , 2002 .

[21]  Franz-Josef Tegude,et al.  Photoluminescence of GaAs nanowhiskers grown on Si substrate , 2004 .

[22]  R. Hicks,et al.  Sites for arsine adsorption on GaAs(001) , 1996 .

[23]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[24]  Lars Samuelson,et al.  Epitaxially grown GaP/GaAs1−xPx/GaP double heterostructure nanowires for optical applications , 2005 .

[25]  Characterisation of GaAs nanowhiskers grown on GaAs and Si substrates , 2005, International Conference on Indium Phosphide and Related Materials, 2005.

[26]  Hans Lüth,et al.  Resonant tunneling in nanocolumns improved by quantum collimation. , 2005, Nano letters.