Formate and its role in hydrogen production in Escherichia coli.

The production of dihydrogen by Escherichia coli and other members of the Enterobacteriaceae is one of the classic features of mixed-acid fermentation. Synthesis of the multicomponent, membrane-associated FHL (formate hydrogenlyase) enzyme complex, which disproportionates formate into CO(2) and H(2), has an absolute requirement for formate. Formate, therefore, represents a signature molecule in the fermenting E. coli cell and factors that determine formate metabolism control FHL synthesis and consequently dihydrogen evolution.

[1]  R. Sawers,et al.  Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme , 1985, Journal of bacteriology.

[2]  Feng Yu,et al.  The roles of the polytopic membrane proteins NarK, NarU and NirC in Escherichia coli K‐12: two nitrate and three nitrite transporters , 2002, Molecular microbiology.

[3]  A. Böck,et al.  Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli , 1987, Molecular and General Genetics MGG.

[4]  G. Sawers,et al.  PMF Through the Redox Loop , 2002, Science.

[5]  G. Sawers,et al.  Isolation and characterization of hypophosphite‐resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter , 1994, Molecular microbiology.

[6]  T C Stadtman,et al.  Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. , 1990, The Journal of biological chemistry.

[7]  Jeffrey Green,et al.  FNR-mediated regulation of hyp expression in Escherichia coli. , 2003, FEMS microbiology letters.

[8]  K. Shanmugam,et al.  N-terminal truncations in the FhlA protein result in formate- and MoeA-independent expression of the hyc (formate hydrogenlyase) operon of Escherichia coli. , 2001, Microbiology.

[9]  S. Eykyn Microbiology , 1950, The Lancet.

[10]  J. Ferry,et al.  Identification of formate dehydrogenase-specific mRNA species and nucleotide sequence of the fdhC gene of Methanobacterium formicicum , 1992, Journal of bacteriology.

[11]  H. Enoch,et al.  The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. , 1975, The Journal of biological chemistry.

[12]  A. Böck,et al.  Effector-mediated stimulation of ATPase activity by the sigma 54-dependent transcriptional activator FHLA from Escherichia coli , 1995, Journal of bacteriology.

[13]  V. Gladyshev,et al.  Crystal Structure of Formate Dehydrogenase H: Catalysis Involving Mo, Molybdopterin, Selenocysteine, and an Fe4S4 Cluster , 1997, Science.

[14]  A. Böck,et al.  Identification and sequence analysis of the gene encoding the transcriptional activator of the formate hydrogenlyase system of Escherichia coli , 1990, Molecular microbiology.

[15]  A. Böck,et al.  Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli , 1991, Molecular microbiology.

[16]  R. Hedderich,et al.  A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. , 2004, Microbiology.

[17]  P. Vignais,et al.  Molecular biology of microbial hydrogenases. , 2004, Current issues in molecular biology.

[18]  So Iwata,et al.  Molecular Basis of Proton Motive Force Generation: Structure of Formate Dehydrogenase-N , 2002, Science.

[19]  G. Storz,et al.  The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding , 1998, The EMBO journal.

[20]  A. Böck,et al.  Characterization of fhlA mutations resulting in ligand-independent transcriptional activation and ATP hydrolysis , 1997, Journal of bacteriology.

[21]  A. Böck,et al.  Mutations in trans which affect the anaerobic expression of a formate dehydrogenase (fdhF) structural gene , 2004, Archives of Microbiology.

[22]  August Böck,et al.  Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenylase components , 1990 .

[23]  A. Böck,et al.  Mechanism of regulation of the formate‐hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon , 1991, Molecular microbiology.

[24]  G. Sawers,et al.  Pyruvate formate-lyase is not essential for nitrate respiration by Escherichia coli. , 1994, FEMS microbiology letters.

[25]  G. Sawers The hydrogenases and formate dehydrogenases ofEscherichia coli , 2004, Antonie van Leeuwenhoek.

[26]  J. Heider,et al.  Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. , 1991, The Journal of biological chemistry.

[27]  K. Hellingwerf,et al.  Effects of Limited Aeration and of the ArcAB System on Intermediary Pyruvate Catabolism in Escherichia coli , 2000, Journal of bacteriology.

[28]  A. Böck,et al.  Fidelity of metal insertion into hydrogenases , 2001, FEBS letters.

[29]  M. Stephenson,et al.  Hydrogenlyases: Bacterial enzymes liberating molecular hydrogen. , 1932, The Biochemical journal.

[30]  G. Sawers,et al.  Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. , 1999, Microbiology.

[31]  A. Böck,et al.  Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Böck,et al.  Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme , 1991, Journal of bacteriology.

[33]  A. Böck,et al.  Metal insertion into NiFe-hydrogenases. , 2001, Biochemical Society transactions.