Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems

Abstract In this paper we make an extensive analysis of the imaginary stability of many explicit Runge–Kutta methods with variable coefficients for oscillatory problems. The Runge–Kutta methods considered are based on several construction procedures such as exponential fitting, phase-fitting or dissipative-fitting (the latter two techniques can be combined). Two-dimensional regions of imaginary stability for the first-order test model are obtained. These regions are a generalization of the imaginary stability intervals of classical Runge–Kutta methods. To have an idea of the numerical performance of the methods we have also made a phase-lag and dissipation analysis.

[1]  S. Yau Mathematics and its applications , 2002 .

[2]  Zacharias A. Anastassi,et al.  An optimized Runge-Kutta method for the solution of orbital problems , 2005 .

[3]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[4]  Ana B. González,et al.  New methods for oscillatory problems based on classical codes , 2002 .

[5]  J. M. Franco An embedded pair of exponentially fitted explicit Runge-Kutta methods , 2002 .

[6]  Theodore E. Simos,et al.  A Modified Runge-Kutta Method with Phase-lag of Order Infinity for the Numerical Solution of the Schrödinger Equation and Related Problems , 2001, Comput. Chem..

[7]  J. M. Franco Stability of explicit ARKN methods for perturbed oscillators , 2005 .

[8]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[9]  Zacharias A. Anastassi,et al.  A dispersive-fitted and dissipative-fitted explicit Runge–Kutta method for the numerical solution of orbital problems , 2004 .

[10]  Pablo Martín,et al.  A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators , 1999, Numerische Mathematik.

[11]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[12]  Tom E. Simos,et al.  AN EMBEDDED RUNGE–KUTTA METHOD WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION , 2000 .

[13]  Beatrice Paternoster,et al.  Stability regions of one step mixed collocation methods for y″=f(x,y) , 2005 .

[14]  Tom E. Simos,et al.  A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation , 2001 .

[15]  D. G. Bettis Runge-Kutta algorithms for oscillatory problems , 1979 .

[16]  Tom E. Simos,et al.  A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution , 1993 .

[17]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[18]  Ch. Tsitouras,et al.  Optimized Runge-Kutta pairs for problems with oscillating solutions , 2002 .

[19]  J. M. Franco Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .

[20]  Stability of linear multistep methods on the imaginary axis , 1981 .

[21]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[22]  Hans Van de Vyver,et al.  Modified explicit Runge-Kutta methods for the numerical solution of the Schrödinger equation , 2005, Appl. Math. Comput..

[23]  Hans Van de Vyver,et al.  On the generation of P-stable exponentially fitted Runge-Kutta-Nyström methods by exponentially fitted Runge-Kutta methods , 2006 .

[24]  Hans Van de Vyver,et al.  Comparison of some special optimized fourth-order Runge-Kutta methods for the numerical solution of the Schrödinger equation , 2005, Comput. Phys. Commun..

[25]  Beatrice Paternoster,et al.  A note on the capacitance matrix algorithm, substructuring, and mixed or Neumann boundary conditions , 1987 .

[26]  H. De Meyer,et al.  Exponentially fitted Runge-Kutta methods , 2000 .

[27]  Hans Van de Vyver AN EMBEDDED 5(4) PAIR OF MODIFIED EXPLICIT RUNGE–KUTTA METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION , 2005 .

[28]  John P. Coleman,et al.  Mixed collocation methods for y ′′ =f x,y , 2000 .

[29]  Beatrice Paternoster,et al.  Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .

[30]  Gerhard Scheifele On numerical integration of perturbed linear oscillating systems , 1971 .

[31]  Zacharias A. Anastassi,et al.  A trigonometrically fitted Runge–Kutta method for the numerical solution of orbital problems , 2005 .

[32]  Zacharias A. Anastassi,et al.  Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .