Stability and phase-lag analysis of explicit Runge-Kutta methods with variable coefficients for oscillatory problems
暂无分享,去创建一个
[1] S. Yau. Mathematics and its applications , 2002 .
[2] Zacharias A. Anastassi,et al. An optimized Runge-Kutta method for the solution of orbital problems , 2005 .
[3] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[4] Ana B. González,et al. New methods for oscillatory problems based on classical codes , 2002 .
[5] J. M. Franco. An embedded pair of exponentially fitted explicit Runge-Kutta methods , 2002 .
[6] Theodore E. Simos,et al. A Modified Runge-Kutta Method with Phase-lag of Order Infinity for the Numerical Solution of the Schrödinger Equation and Related Problems , 2001, Comput. Chem..
[7] J. M. Franco. Stability of explicit ARKN methods for perturbed oscillators , 2005 .
[8] T. E. Simos,et al. An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .
[9] Zacharias A. Anastassi,et al. A dispersive-fitted and dissipative-fitted explicit Runge–Kutta method for the numerical solution of orbital problems , 2004 .
[10] Pablo Martín,et al. A new family of Runge–Kutta type methods for the numerical integration of perturbed oscillators , 1999, Numerische Mathematik.
[11] H. De Meyer,et al. Exponentially-fitted explicit Runge–Kutta methods , 1999 .
[12] Tom E. Simos,et al. AN EMBEDDED RUNGE–KUTTA METHOD WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION , 2000 .
[13] Beatrice Paternoster,et al. Stability regions of one step mixed collocation methods for y″=f(x,y) , 2005 .
[14] Tom E. Simos,et al. A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation , 2001 .
[15] D. G. Bettis. Runge-Kutta algorithms for oscillatory problems , 1979 .
[16] Tom E. Simos,et al. A Runge-Kutta Fehlberg method with phase-lag of order infinity for initial-value problems with oscillating solution , 1993 .
[17] Liviu Gr. Ixaru,et al. P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .
[18] Ch. Tsitouras,et al. Optimized Runge-Kutta pairs for problems with oscillating solutions , 2002 .
[19] J. M. Franco. Runge–Kutta–Nyström methods adapted to the numerical integration of perturbed oscillators , 2002 .
[20] Stability of linear multistep methods on the imaginary axis , 1981 .
[21] A. D. Raptis,et al. A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .
[22] Hans Van de Vyver,et al. Modified explicit Runge-Kutta methods for the numerical solution of the Schrödinger equation , 2005, Appl. Math. Comput..
[23] Hans Van de Vyver,et al. On the generation of P-stable exponentially fitted Runge-Kutta-Nyström methods by exponentially fitted Runge-Kutta methods , 2006 .
[24] Hans Van de Vyver,et al. Comparison of some special optimized fourth-order Runge-Kutta methods for the numerical solution of the Schrödinger equation , 2005, Comput. Phys. Commun..
[25] Beatrice Paternoster,et al. A note on the capacitance matrix algorithm, substructuring, and mixed or Neumann boundary conditions , 1987 .
[26] H. De Meyer,et al. Exponentially fitted Runge-Kutta methods , 2000 .
[27] Hans Van de Vyver. AN EMBEDDED 5(4) PAIR OF MODIFIED EXPLICIT RUNGE–KUTTA METHODS FOR THE NUMERICAL SOLUTION OF THE SCHRÖDINGER EQUATION , 2005 .
[28] John P. Coleman,et al. Mixed collocation methods for y ′′ =f x,y , 2000 .
[29] Beatrice Paternoster,et al. Runge-Kutta(-Nystro¨m) methods for ODEs with periodic solutions based on trigonometric polynomials , 1998 .
[30] Gerhard Scheifele. On numerical integration of perturbed linear oscillating systems , 1971 .
[31] Zacharias A. Anastassi,et al. A trigonometrically fitted Runge–Kutta method for the numerical solution of orbital problems , 2005 .
[32] Zacharias A. Anastassi,et al. Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .