The class of the affine line is a zero divisor in the Grothendieck ring: an improvement
暂无分享,去创建一个
[1] L. Borisov. Class of the affine line is a zero divisor in the Grothendieck ring , 2014, 1412.6194.
[2] Daniel Litt. Symmetric Powers Do Not Stabilize , 2012, 1209.4708.
[3] J. Huizenga. RATIONALLY CONNECTED VARIETIES , 2009 .
[4] A. Kuznetsov. Lefschetz decompositions and categorical resolutions of singularities , 2006, math/0609240.
[5] A. Căldăraru,et al. The Pfaffian-Grassmannian derived equivalence , 2006, math/0608404.
[6] J. Denef,et al. On some rational generating series occuring in arithmetic geometry , 2002, math/0212202.
[7] B. Poonen. The Grothendieck ring of varieties is not a domain , 2002, math/0204306.
[8] Julien A. Sebag. Integration motivique sur les schemas formels , 2001, math/0112249.
[9] M. Larsen,et al. Motivic measures and stable birational geometry , 2001, math/0110255.
[10] E. Rødland. The Pfaffian Calabi–Yau, its Mirror, and their Link to the Grassmannian G(2,7) , 1998, Compositio Mathematica.
[11] K. Karu,et al. Torification and factorization of birational maps , 1999, math/9904135.