Towards adaptive kinetic-fluid simulations of weakly ionized plasmas

This paper describes an Adaptive Mesh and Algorithm Refinement (AMAR) methodology for multi-scale simulations of gas flows and the challenges associated with extending this methodology for simulations of weakly ionized plasmas. The AMAR method combines Adaptive Mesh Refinement (AMR) with automatic selection of kinetic or continuum solvers in different parts of computational domains. We first review the discrete velocity method for solving Boltzmann and Wang Chang-Uhlenbeck kinetic equations for rarefied gases. Then, peculiarities of AMR implementation with octree Cartesian mesh are discussed. A Unified Flow Solver (UFS) uses AMAR method with adaptive Cartesian mesh to dynamically introduce kinetic patches for multi-scale simulations of gas flows. We describe fluid plasma models with AMR capabilities and illustrate how physical models affect simulation results for gas discharges, especially in the areas where electron kinetics plays an important role. We introduce Eulerian solvers for plasma kinetic equations and illustrate the concept of adaptive mesh in velocity space. Specifics of electron kinetics in collisional plasmas are described focusing on deterministic methods of solving kinetic equations for electrons under different conditions. We illustrate the appearance of distinct groups of electrons in the cathode region of DC discharges and discuss the physical models appropriate for each group. These kinetic models are currently being incorporated into AMAR methodology for multi-scale plasma simulations.

[1]  Magdi Shoucri,et al.  Numerical simulation of an inductively coupled discharge using an Eulerian Vlasov code , 2003 .

[2]  Pietro De Palma,et al.  An immersed boundary method for compressible flows using local grid refinement , 2007, J. Comput. Phys..

[3]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[4]  D. B. Goldstein,et al.  Monte Carlo solution of the Boltzmann equation via a discrete velocity model , 2011, J. Comput. Phys..

[5]  V T Tikhonchuk,et al.  Electron kinetic effects in atmosphere breakdown by an intense electromagnetic pulse. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  Uwe R. Kortshagen,et al.  Electron Kinetics and applications of glow discharges , 2002 .

[7]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[8]  M. Kushner,et al.  Effect of inhomogeneities on streamer propagation: I. Intersection with isolated bubbles and particles , 2009 .

[9]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[10]  S. Tiwari,et al.  Coupling of the Boltzmann and Euler Equations with Automatic Domain Decomposition , 1998 .

[11]  Tomoki Ohsawa,et al.  Deterministic Hybrid Computation of Rarefied Gas Flows , 2003 .

[12]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[13]  Leo J. Stocco,et al.  On Spatial Orders and Location Codes , 2009, IEEE Transactions on Computers.

[14]  F. G. Cheremisin Solution of the Wang-Chang-Uhlenbeck master equation , 2002 .

[15]  Lev D. Tsendin Nonlocal electron kinetics in gas-discharge plasma , 2010 .

[16]  Piotr Kowalczyk,et al.  Fast numerical method for the Boltzmann equation on non-uniform grids , 2008, J. Comput. Phys..

[17]  M. Bakhtiari,et al.  Revisiting the momentum-space study of runaway electrons during lightning initiation , 2009 .

[18]  Alejandro L. Garcia,et al.  Adaptive Mesh and Algorithm Refinement Using Direct Simulation Monte Carlo , 1999 .

[19]  Kolobov,et al.  Analytic model of the cathode region of a short glow discharge in light gases. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[20]  Alfred E. Beylich Kinetics of thermalization in shock waves , 2002 .

[21]  Axel Klar,et al.  A particle-particle hybrid method for kinetic and continuum equations , 2009, J. Comput. Phys..

[22]  S. Popinet Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries , 2003 .

[23]  Jae-Doo Lee,et al.  Development of a Turbulent Wall-Function Based Viscous Cartesian-Grid Methodology , 2007 .

[24]  K. Ikeda,et al.  3D simulations of an industrial ICP reactor with comparison to experimental data , 2003 .

[25]  F. G. Tcheremissine,et al.  Solution of the Boltzmann Kinetic Equation for Low Speed Flows , 2008 .

[26]  Boo Cheong Khoo,et al.  Interface problems and methods in biological and physical flows , 2009 .

[27]  O. Chanrion,et al.  Production of runaway electrons by negative streamer discharges , 2010 .

[28]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[29]  V. V. Aristov,et al.  Unified Kinetic Approach for Simulation of Gas Flows in Rarefied and Continuum Regimes , 2007 .

[30]  Felix Tcheremissine,et al.  Direct Numerical Solution Of The Boltzmann Equation , 2005 .

[31]  F. G. Cheremisin,et al.  A conservative method for solving the Boltzmann equation with centrally symmetric interaction potentials , 1999 .

[32]  Alexei M. Khokhlov,et al.  Fully Threaded Tree Algorithms for Adaptive Refinement Fluid Dynamics Simulations , 1997, astro-ph/9701194.

[33]  Hua Ji,et al.  A new adaptive mesh refinement data structure with an application to detonation , 2010, J. Comput. Phys..

[34]  Vladimir Kolobov,et al.  Nonlocal electron kinetics in collisional gas discharge plasmas , 1995 .

[35]  Sergej,et al.  THREE WAY DECOMPOSITION FOR THE BOLTZMANN EQUATION , 2009 .

[36]  Ieee Nuclear,et al.  IEEE conference record-abstracts , 1974 .

[37]  V. Aristov Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows , 2001 .

[38]  Vladimir Kolobov,et al.  Striations in rare gas plasmas , 2006 .

[39]  J. R. Albritton Laser absorption and heat transport by non-Maxwell-Boltzmann electron distributions , 1983 .

[40]  H. Sagan Space-filling curves , 1994 .

[41]  L. D. Tsendin Electron distribution function of weakly ionized plasmas in nonuniform electric fields. I - Weak fields /energy balance determined by nearly elastic collisions/ , 1982 .

[42]  Vladimir I. Kolobov,et al.  Immersed Boundary Method for Boltzmann and Navier‐Stokes Solvers with Adaptive Cartesian Mesh , 2011 .

[43]  Phillip Colella,et al.  Numerical Solution of Plasma Fluid Equations Using Locally Refined Grids , 1997 .

[44]  Kun Xu,et al.  A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations , 2011, J. Comput. Phys..

[45]  Vladimir I. Kolobov,et al.  Boltzmann Solver with Adaptive Mesh in Velocity Space , 2011 .

[46]  Ta-you Wu,et al.  Kinetic theory of gases and plasmas , 1964 .

[47]  H. S. Wijesinghe,et al.  Discussion of Hybrid Atomistic-Continuum Methods for Multiscale Hydrodynamics , 2004 .

[48]  I. Amdur,et al.  Kinetic Theory of Gases , 1959 .

[49]  Anne Bourdon,et al.  Numerical simulation of filamentary discharges with parallel adaptive mesh refinement , 2008, J. Comput. Phys..

[50]  A. Beylich,et al.  Solving the kinetic equation for all Knudsen numbers , 2000 .

[51]  Alla Raines,et al.  Study of a shock wave structure in gas mixtures on the basis of the Boltzmann equation , 2002 .

[52]  Axel Klar,et al.  An adaptive domain decomposition procedure for Boltzmann and Euler equations , 1998 .

[53]  de E.D. Goede Het vergelijken van eindige differentieschema's voor het numeriek oplossen van hyperbolische differentiaalvergelijkingen [The comparison of finite difference schemes for the numerical solution of hyperbolic differential equations] , 1986 .

[54]  Chin-Cheng Wang,et al.  Three-dimensional simulation of a microplasma pump , 2009 .

[55]  V. V. Aristov The method of variable meshes in the velocity space in the problem of a strong condensation shock , 1977 .

[56]  Patrick Le Tallec,et al.  Coupling Boltzmann and Navier-Stokes Equations by Half Fluxes , 1997 .

[57]  V. V. Aristov,et al.  Construction of a Unified Continuum/Kinetic Solver for Aerodynamic Problems , 2005 .

[58]  Mikhail N. Shneider,et al.  Molecular transport in pulsed optical lattices , 2007 .

[59]  Katsuhisa Koura,et al.  Direct simulation Monte Carlo study of rotational nonequilibrium in shock wave and spherical expansion of nitrogen using classical trajectory calculations , 2002 .

[60]  V.I. Kolobov,et al.  Streamer Simulations With Dynamically Adaptive Cartesian Mesh , 2008, IEEE Transactions on Plasma Science.

[61]  Pascal Ray,et al.  Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method , 2011 .

[62]  A. R. Bell,et al.  An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields , 2004 .

[63]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[64]  Zhilin Li,et al.  AN INTRODUCTION TO THE IMMERSED BOUNDARY AND THE IMMERSED INTERFACE METHODS , 2009 .

[65]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[66]  Tim Reis,et al.  The lattice Boltzmann method for complex flows , 2007 .

[67]  Kazuo Aoki,et al.  Shock-wave structure for a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard-sphere molecules , 2001 .

[68]  Willem Hundsdorfer,et al.  An adaptive grid refinement strategy for the simulation of negative streamers , 2006, J. Comput. Phys..

[69]  Stephane Pasquiers,et al.  Diffuse mode and diffuse-to-filamentary transition in a high pressure nanosecond scale corona discharge under high voltage , 2009 .

[70]  George E. Georghiou,et al.  Numerical modelling of atmospheric pressure gas discharges leading to plasma production , 2005 .

[71]  Lorenzo Pareschi,et al.  Modeling and Computational Methods for Kinetic Equations , 2012 .

[72]  Alexander M. Starik,et al.  Comprehensive analysis of the effect of atomic and molecular metastable state excitation on air plasma composition behind strong shock waves , 2010 .

[73]  J. Verboncoeur Particle simulation of plasmas: review and advances , 2005 .

[74]  V. V. Aristov,et al.  Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement , 2007, J. Comput. Phys..

[75]  Stéphane Dellacherie,et al.  Coupling of the Wang Chang--Uhlenbeck equations with the multispecies Euler system , 2003 .

[76]  Maria Groppi,et al.  Shock structure analysis in chemically reacting gas mixtures by a relaxation-time kinetic model , 2008 .

[77]  Taku Ohwada,et al.  Structure of normal shock waves: Direct numerical analysis of the Boltzmann equation for hard-sphere molecules , 1993 .

[78]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[79]  Mark J. Kushner,et al.  Hybrid modelling of low temperature plasmas for fundamental investigations and equipment design , 2009 .

[80]  George E. Georghiou,et al.  Numerical modelling of negative discharges in air with experimental validation , 2011 .

[81]  F. G. Tcheremissine,et al.  Solution to the Boltzmann kinetic equation for high-speed flows , 2006 .

[82]  Moulay D. Tidriri,et al.  Coupling Boltzmann and Navier-Stokes Equations by Friction , 1996 .

[83]  Vladimir I. Kolobov,et al.  Multi‐Scale Simulations of Gas Flows: Effect of External Forces , 2009 .

[84]  P.,et al.  A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation , 2004 .

[85]  Seok-Hyun Lee,et al.  A study on the streamer simulation using adaptive mesh generation and FEM-FCT , 2001 .

[86]  Olivier Hoenen,et al.  An Efficient Data Structure for an Adaptive Vlasov Solver , 2022 .

[87]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[88]  Livio Gibelli,et al.  Solving Kinetic Equations on GPU's , 2011 .

[89]  Giovanni Russo,et al.  Numerical solutions of the Boltzmann equation: comparison of different algorithms , 2008 .

[90]  Valery Godyak,et al.  Hot plasma effects in gas discharge plasmaa) , 2005 .

[91]  Tikhonchuk Vt,et al.  Electron kinetic effects in atmosphere breakdown by an intense electromagnetic pulse. , 1999 .

[92]  Vladimir Kolobov,et al.  Fokker–Planck modeling of electron kinetics in plasmas and semiconductors , 2003 .

[93]  Luc Mieussens,et al.  A multiscale kinetic-fluid solver with dynamic localization of kinetic effects , 2009, J. Comput. Phys..

[94]  Taku Ohwada,et al.  On the Construction of Kinetic Schemes , 2002 .

[95]  Umran S. Inan,et al.  Monte Carlo simulation of runaway MeV electron breakdown with application to red sprites and terrestrial gamma ray flashes , 1999 .

[96]  Yoshio Sone,et al.  Kinetic Theory and Fluid Dynamics , 2002 .

[97]  Lowell L. Baker,et al.  Variance reduction for Monte Carlo solutions of the Boltzmann equation , 2005 .

[98]  Sergej Rjasanow,et al.  Numerical solution of the Boltzmann equation on the uniform grid , 2002, Computing.

[99]  D. S. Nikandrov Formation of the distribution function for runaway electrons in strong fields of pulsed gas discharges , 2008 .

[100]  R. Roussel-Dupre,et al.  Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies , 1998 .

[101]  W. Coirier An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ. , 1994 .

[102]  VIII Brazilian Symposium on Games and Digital Entertainment, SBGAMES 2009, Rio de Janeiro, Brazil, October 8-10, 2009 , 2009, SBGAMES.

[103]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[104]  Neil Goldsman,et al.  2-D MOSFET modeling including surface effects and impact ionization by self-consistent solution of the Boltzmann, Poisson, and hole-continuity equations , 1997 .

[105]  François Rogier,et al.  Multi-scale gas discharge simulations using asynchronous adaptive mesh refinement , 2010, Comput. Phys. Commun..

[106]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[107]  Michael L. Norman,et al.  The Impact of AMR in Numerical Astrophysics and Cosmology , 2004 .

[108]  Thomas E. Schwartzentruber,et al.  A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows , 2007, J. Comput. Phys..

[109]  LiChao,et al.  Spatially hybrid computations for streamer discharges with generic features of pulled fronts , 2010 .

[110]  Hassan Hassan,et al.  Two-dimensional coupling issues of hybrid DSMC/Navier-Stokes solvers , 1997 .

[111]  Jacob K. White,et al.  Simulation of semiconductor devices using a Galerkin/spherical harmonic expansion approach to solving the coupled Poisson-Boltzmann system , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[112]  N. M. Korobov Exponential Sums and their Applications , 1992 .

[113]  Anatoly P. Napartovich,et al.  Negative corona, glow and spark discharges in ambient air and transitions between them , 2005 .

[114]  Rajat Mittal,et al.  A sharp interface immersed boundary method for compressible viscous flows , 2007, J. Comput. Phys..

[115]  Graham V. Candler,et al.  A Hybrid CFD-DSMC Method of Modeling Continuum-Rarefied Flows , 2004 .

[116]  Yu. Yu. Kloss,et al.  Solving Boltzmann equation on GPU , 2010, ICCS.

[117]  Hyunchul Kim,et al.  Particle and fluid simulations of low-temperature plasma discharges: benchmarks and kinetic effects , 2005 .

[118]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[119]  V. Kolobov,et al.  Simulation of electron kinetics in gas discharges , 2006, IEEE Transactions on Plasma Science.

[120]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[121]  Chao Li,et al.  Spatially hybrid computations for streamer discharges with generic features of pulled fronts: I. Planar fronts , 2009, J. Comput. Phys..

[122]  Prakash Vedula,et al.  Kinetic solution of the structure of a shock wave in a nonreactive gas mixture , 2011 .