Gross substitutability: An algorithmic survey

Abstract The concept of gross substitute valuations was introduced by Kelso and Crawford as a sufficient conditions for the existence of Walrasian equilibria in economies with indivisible goods. The proof is algorithmic in nature: gross substitutes is exactly the condition that enables a natural price adjustment procedure – known as Walrasian tatonnement – to converge to equilibrium. The same concept was also introduced independently in other communities with different names: M ♮ -concave functions (Murota and Shioura), Matroidal and Well-Layered maps (Dress and Terhalle) and valuated matroids (Dress and Wenzel). Here we survey various definitions of gross substitutability and show their equivalence. We focus on algorithmic aspects of the various definitions. In particular, we highlight that gross substitutes are the exact class of valuations for which demand oracles can be computed via an ascending greedy algorithm. It also corresponds to a natural discrete analogue of concave functions: local maximizers correspond to global maximizers.

[1]  Ennio Stacchetti,et al.  The English Auction with Differentiated Commodities , 2000, J. Econ. Theory.

[2]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[3]  Andrew V. Goldberg,et al.  Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.

[4]  Lawrence M. Ausubel,et al.  Ascending Auctions with Package Bidding , 2002 .

[5]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..

[6]  Tim Roughgarden,et al.  Optimal Mechanisms for Combinatorial Auctions and Combinatorial Public Projects via Convex Rounding , 2016, J. ACM.

[7]  K. Murota Convexity and Steinitz's Exchange Property , 1996 .

[8]  Noam Nisan,et al.  The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.

[9]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[10]  Alexandru Nichifor,et al.  Full Substitutability , 2018, Theoretical Economics.

[11]  Lloyd S. Shapley,et al.  Complements and substitutes in the opttmal assignment problem , 1962 .

[12]  Zaifu Yang,et al.  A Double‐Track Adjustment Process for Discrete Markets With Substitutes and Complements , 2009 .

[13]  A. W. M. Dress,et al.  Rewarding Maps: On Greedy Optimization of Set Functions , 1995 .

[14]  Paul R. Milgrom,et al.  Matching with Contracts , 2005 .

[15]  Kazuo Murota,et al.  Valuated Matroid Intersection II: Algorithms , 1996, SIAM J. Discret. Math..

[16]  Tim Roughgarden,et al.  Sketching valuation functions , 2012, SODA.

[17]  James G. Oxley,et al.  Matroid theory , 1992 .

[18]  Vahab S. Mirrokni,et al.  Approximating submodular functions everywhere , 2009, SODA.

[19]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[20]  Daniel Lehmann,et al.  Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.

[21]  Renato Paes Leme,et al.  Gross substitutes and endowed assignment valuations , 2015 .

[22]  D. Bertsekas The auction algorithm: A distributed relaxation method for the assignment problem , 1988 .

[23]  Uwe T. Zimmermann Negative circuits for flows and submodular flows , 1992, Discret. Appl. Math..

[24]  Richard M. Karp,et al.  A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..

[25]  Zaifu Yang,et al.  A Note on Kelso and Crawford's Gross Substitutes Condition , 2003, Math. Oper. Res..

[26]  Daniel Lehmann,et al.  Presentation and structure of substitutes valuations , 2004, EC '04.

[27]  Zaifu Yang,et al.  Equilibria and Indivisibilities: Gross Substitutes and Complements , 2006 .

[28]  Kazuo Murota,et al.  Matrices and Matroids for Systems Analysis , 2000 .

[29]  A. Roth Stability and Polarization of Interests in Job Matching , 1984 .

[30]  Faruk Gul,et al.  WALRASIAN EQUILIBRIUM WITH GROSS SUBSTITUTES , 1999 .

[31]  Walter Wenzel,et al.  Valuated matroids: a new look at the greedy algorithm , 1989 .

[32]  David C. Parkes,et al.  An Ascending-Price Generalized Vickrey Auction , 2002 .

[33]  Kazuo Murota,et al.  Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..

[34]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[35]  K. Murota Discrete convex analysis: A tool for economics and game theory , 2016, 2212.03598.

[36]  Donald E. Knuth,et al.  The Asymptotic Number of Geometries , 1974, J. Comb. Theory A.

[37]  Shahar Dobzinski,et al.  Two Randomized Mechanisms for Combinatorial Auctions , 2007, APPROX-RANDOM.

[38]  L. Walras Elements of Pure Economics, or The Theory of Social Wealth , 1955 .

[39]  Uriel Feige On Maximizing Welfare When Utility Functions Are Subadditive , 2009, SIAM J. Comput..

[40]  J. Potters,et al.  Verifying gross substitutability , 2002 .

[41]  S. Bikhchandani,et al.  Competitive Equilibrium in an Exchange Economy with Indivisibilities , 1997 .

[42]  Andreas W. M. Dress,et al.  Well-layered maps—A class of greedily optimizable set functions , 1995 .

[43]  Kazuo Murota,et al.  M-Convex Function on Generalized Polymatroid , 1999, Math. Oper. Res..

[44]  Maria-Florina Balcan,et al.  Learning submodular functions , 2010, ECML/PKDD.

[45]  Nicole Immorlica,et al.  PASS Approximation: A Framework for Analyzing and Designing Heuristics , 2013, Algorithmica.

[46]  A. Tamura,et al.  GROSS SUBSTITUTES CONDITION AND DISCRETE CONCAVITY FOR MULTI-UNIT VALUATIONS: A SURVEY , 2015 .

[47]  Lawrence M. Ausubel An efficient dynamic auction for heterogeneous commodities , 2006 .

[48]  D. Gale,et al.  Multi-Item Auctions , 1986, Journal of Political Economy.

[49]  V. Crawford,et al.  Job Matching, Coalition Formation, and Gross Substitutes , 1982 .

[50]  K. Murota,et al.  M-convex functions and tree metrics , 2004 .

[51]  Satoru Fujishige,et al.  A PRIMAL APPROACH TO THE INDEPENDENT ASSIGNMENT PROBLEM , 1977 .

[52]  M. Klein A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems , 1966 .