Gross substitutability: An algorithmic survey
暂无分享,去创建一个
[1] Ennio Stacchetti,et al. The English Auction with Differentiated Commodities , 2000, J. Econ. Theory.
[2] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[3] Andrew V. Goldberg,et al. Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.
[4] Lawrence M. Ausubel,et al. Ascending Auctions with Package Bidding , 2002 .
[5] Nimrod Megiddo. Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..
[6] Tim Roughgarden,et al. Optimal Mechanisms for Combinatorial Auctions and Combinatorial Public Projects via Convex Rounding , 2016, J. ACM.
[7] K. Murota. Convexity and Steinitz's Exchange Property , 1996 .
[8] Noam Nisan,et al. The communication requirements of efficient allocations and supporting prices , 2006, J. Econ. Theory.
[9] Kazuo Murota,et al. Discrete convex analysis , 1998, Math. Program..
[10] Alexandru Nichifor,et al. Full Substitutability , 2018, Theoretical Economics.
[11] Lloyd S. Shapley,et al. Complements and substitutes in the opttmal assignment problem , 1962 .
[12] Zaifu Yang,et al. A Double‐Track Adjustment Process for Discrete Markets With Substitutes and Complements , 2009 .
[13] A. W. M. Dress,et al. Rewarding Maps: On Greedy Optimization of Set Functions , 1995 .
[14] Paul R. Milgrom,et al. Matching with Contracts , 2005 .
[15] Kazuo Murota,et al. Valuated Matroid Intersection II: Algorithms , 1996, SIAM J. Discret. Math..
[16] Tim Roughgarden,et al. Sketching valuation functions , 2012, SODA.
[17] James G. Oxley,et al. Matroid theory , 1992 .
[18] Vahab S. Mirrokni,et al. Approximating submodular functions everywhere , 2009, SODA.
[19] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[20] Daniel Lehmann,et al. Combinatorial auctions with decreasing marginal utilities , 2001, EC '01.
[21] Renato Paes Leme,et al. Gross substitutes and endowed assignment valuations , 2015 .
[22] D. Bertsekas. The auction algorithm: A distributed relaxation method for the assignment problem , 1988 .
[23] Uwe T. Zimmermann. Negative circuits for flows and submodular flows , 1992, Discret. Appl. Math..
[24] Richard M. Karp,et al. A characterization of the minimum cycle mean in a digraph , 1978, Discret. Math..
[25] Zaifu Yang,et al. A Note on Kelso and Crawford's Gross Substitutes Condition , 2003, Math. Oper. Res..
[26] Daniel Lehmann,et al. Presentation and structure of substitutes valuations , 2004, EC '04.
[27] Zaifu Yang,et al. Equilibria and Indivisibilities: Gross Substitutes and Complements , 2006 .
[28] Kazuo Murota,et al. Matrices and Matroids for Systems Analysis , 2000 .
[29] A. Roth. Stability and Polarization of Interests in Job Matching , 1984 .
[30] Faruk Gul,et al. WALRASIAN EQUILIBRIUM WITH GROSS SUBSTITUTES , 1999 .
[31] Walter Wenzel,et al. Valuated matroids: a new look at the greedy algorithm , 1989 .
[32] David C. Parkes,et al. An Ascending-Price Generalized Vickrey Auction , 2002 .
[33] Kazuo Murota,et al. Valuated Matroid Intersection I: Optimality Criteria , 1996, SIAM J. Discret. Math..
[34] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[35] K. Murota. Discrete convex analysis: A tool for economics and game theory , 2016, 2212.03598.
[36] Donald E. Knuth,et al. The Asymptotic Number of Geometries , 1974, J. Comb. Theory A.
[37] Shahar Dobzinski,et al. Two Randomized Mechanisms for Combinatorial Auctions , 2007, APPROX-RANDOM.
[38] L. Walras. Elements of Pure Economics, or The Theory of Social Wealth , 1955 .
[39] Uriel Feige. On Maximizing Welfare When Utility Functions Are Subadditive , 2009, SIAM J. Comput..
[40] J. Potters,et al. Verifying gross substitutability , 2002 .
[41] S. Bikhchandani,et al. Competitive Equilibrium in an Exchange Economy with Indivisibilities , 1997 .
[42] Andreas W. M. Dress,et al. Well-layered maps—A class of greedily optimizable set functions , 1995 .
[43] Kazuo Murota,et al. M-Convex Function on Generalized Polymatroid , 1999, Math. Oper. Res..
[44] Maria-Florina Balcan,et al. Learning submodular functions , 2010, ECML/PKDD.
[45] Nicole Immorlica,et al. PASS Approximation: A Framework for Analyzing and Designing Heuristics , 2013, Algorithmica.
[46] A. Tamura,et al. GROSS SUBSTITUTES CONDITION AND DISCRETE CONCAVITY FOR MULTI-UNIT VALUATIONS: A SURVEY , 2015 .
[47] Lawrence M. Ausubel. An efficient dynamic auction for heterogeneous commodities , 2006 .
[48] D. Gale,et al. Multi-Item Auctions , 1986, Journal of Political Economy.
[49] V. Crawford,et al. Job Matching, Coalition Formation, and Gross Substitutes , 1982 .
[50] K. Murota,et al. M-convex functions and tree metrics , 2004 .
[51] Satoru Fujishige,et al. A PRIMAL APPROACH TO THE INDEPENDENT ASSIGNMENT PROBLEM , 1977 .
[52] M. Klein. A Primal Method for Minimal Cost Flows with Applications to the Assignment and Transportation Problems , 1966 .