Performace evaluation of furthest k neighbors queries in spatial databases

In this paper we have studied the performance of furthest k neighbors queries for continuous datasets. We compare our proposed efficient grid based algorithm with conceptual partitioning method the only method that can be used to compute furthest neighbor query. Experiments on the real datasets confirm the efficiency and scalability of our proposed algorithm.

[1]  Andreas Henrich A Distance Scan Algorithm for Spatial Access Structures , 1994, ACM-GIS.

[2]  Yannis Manolopoulos,et al.  Performance of Nearest Neighbor Queries in R-Trees , 1997, ICDT.

[3]  Yufei Tao,et al.  Location-based spatial queries , 2003, SIGMOD '03.

[4]  Nick Roussopoulos,et al.  Nearest neighbor queries , 1995, SIGMOD '95.

[5]  Christos Faloutsos,et al.  Fast Nearest Neighbor Search in Medical Image Databases , 1996, VLDB.

[6]  Xiaohui Yu,et al.  Monitoring k-nearest neighbor queries over moving objects , 2005, 21st International Conference on Data Engineering (ICDE'05).

[7]  Walid G. Aref,et al.  SINA: scalable incremental processing of continuous queries in spatio-temporal databases , 2004, SIGMOD '04.

[8]  Sharad Mehrotra,et al.  Dynamic Queries over Mobile Objects , 2002, EDBT.

[9]  Muhammad Aamir Cheema,et al.  Lazy Updates: An Efficient Technique to Continuously Monitoring Reverse kNN , 2009, Proc. VLDB Endow..

[10]  Muhammad Aamir Cheema,et al.  Multi-guarded safe zone: An effective technique to monitor moving circular range queries , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[11]  Hanan Samet,et al.  Distance browsing in spatial databases , 1999, TODS.

[12]  Walid G. Aref,et al.  SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases , 2005, 21st International Conference on Data Engineering (ICDE'05).

[13]  Hans-Peter Kriegel,et al.  Optimal multi-step k-nearest neighbor search , 1998, SIGMOD '98.

[14]  David Taniar,et al.  Reverse k Nearest Neighbor and Reverse Farthest Neighbor Search on Spatial Networks , 2009, Trans. Large Scale Data Knowl. Centered Syst..

[15]  Wei Wu,et al.  iSEE: Efficient Continuous K-Nearest-Neighbor Monitoring over Moving Objects , 2007, 19th International Conference on Scientific and Statistical Database Management (SSDBM 2007).

[16]  Sure Computing Geodesic Furthest Neighbors in Simple Polygons * , 2003 .

[17]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[18]  Muhammad Aamir Cheema,et al.  CircularTrip: An Effective Algorithm for Continuous k NN Queries , 2007, DASFAA.

[19]  Thomas Brinkhoff,et al.  A Framework for Generating Network-Based Moving Objects , 2002, GeoInformatica.

[20]  Zhenmin Chen,et al.  Characterizations Of Nearest And Farthest Neighbor Algorithms By Clustering Admissibility Conditions , 1998, Pattern Recognit..

[21]  Ling Liu,et al.  MobiEyes: Distributed Processing of Continuously Moving Queries on Moving Objects in a Mobile System , 2004, EDBT.

[22]  Tian Xia,et al.  Continuous Reverse Nearest Neighbor Monitoring , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[23]  Kyriakos Mouratidis,et al.  Conceptual partitioning: an efficient method for continuous nearest neighbor monitoring , 2005, SIGMOD '05.

[24]  Muhammad Aamir Cheema,et al.  Efficient Algorithms to Monitor Continuous Constrained k Nearest Neighbor Queries , 2010, DASFAA.

[25]  Feifei Li,et al.  Reverse Furthest Neighbors in Spatial Databases , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[26]  Xuemin Lin,et al.  Efficient construction of safe regions for moving kNN queries over dynamic datasets , 2009 .