LatLRR for subspace clustering via reweighted Frobenius norm minimization

[1]  Hongying Zhang,et al.  Multi-scale deep multi-view subspace clustering with self-weighting fusion and structure preserving , 2022, Expert Syst. Appl..

[2]  Yiwen Shan,et al.  Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color Image Denoising , 2022, Signal Process..

[3]  Meng Li,et al.  Design of a modular neural network based on an improved soft subspace clustering algorithm , 2022, Expert Syst. Appl..

[4]  Baocai Yin,et al.  Logarithmic Schatten-$p$p Norm Minimization for Tensorial Multi-View Subspace Clustering , 2022, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Dongxia Chang,et al.  Latent Low-Rank Representation With Weighted Distance Penalty for Clustering. , 2022, IEEE Transactions on Cybernetics.

[6]  Yongyong Chen,et al.  Weighted Schatten p-norm minimization with logarithmic constraint for subspace clustering , 2022, Signal Process..

[7]  M. Gao,et al.  Graph-based adaptive and discriminative subspace learning for face image clustering , 2021, Expert Syst. Appl..

[8]  Jianjun Wang,et al.  Performance guarantees of transformed Schatten-1 regularization for exact low-rank matrix recovery , 2021, International Journal of Machine Learning and Cybernetics.

[9]  Xin Luo,et al.  Large-Scale Affine Matrix Rank Minimization With a Novel Nonconvex Regularizer , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[10]  Mingyi Hong,et al.  Penalty Dual Decomposition Method for Nonsmooth Nonconvex Optimization—Part I: Algorithms and Convergence Analysis , 2020, IEEE Transactions on Signal Processing.

[11]  Jianjun Wang,et al.  Accelerated inexact matrix completion algorithm via closed-form q-thresholding (q = 1/2, 2/3) operator , 2020, Int. J. Mach. Learn. Cybern..

[12]  Jialiang Yang,et al.  Robust subspace clustering via symmetry constrained latent low rank representation with converted nuclear norm , 2019, Neurocomputing.

[13]  Jianjun Wang,et al.  Fast and efficient algorithm for matrix completion via closed-form 2/3-thresholding operator , 2019, Neurocomputing.

[14]  Song Yu,et al.  Subspace clustering based on latent low rank representation with Frobenius norm minimization , 2018, Neurocomputing.

[15]  Zhang Yi,et al.  Subspace clustering using a symmetric low-rank representation , 2017, Knowl. Based Syst..

[16]  Qing Liu,et al.  Robust subspace clustering via joint weighted Schatten-p norm and Lq norm minimization , 2017, J. Electronic Imaging.

[17]  Shiqian Ma,et al.  Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis , 2016, Computational Optimization and Applications.

[18]  Chen Xu,et al.  Schatten-q regularizer constrained low rank subspace clustering model , 2016, Neurocomputing.

[19]  Wotao Yin,et al.  Global Convergence of ADMM in Nonconvex Nonsmooth Optimization , 2015, Journal of Scientific Computing.

[20]  Kim-Chuan Toh,et al.  A note on the convergence of ADMM for linearly constrained convex optimization problems , 2015, Computational Optimization and Applications.

[21]  Zhang Yi,et al.  Connections Between Nuclear-Norm and Frobenius-Norm-Based Representations , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[22]  Junbin Gao,et al.  Robust latent low rank representation for subspace clustering , 2014, Neurocomputing.

[23]  Zhang Yi,et al.  fLRR: fast low-rank representation using Frobenius-norm , 2014 .

[24]  David Zhang,et al.  A Generalized Iterated Shrinkage Algorithm for Non-convex Sparse Coding , 2013, 2013 IEEE International Conference on Computer Vision.

[25]  Feiping Nie,et al.  Low-Rank Matrix Recovery via Efficient Schatten p-Norm Minimization , 2012, AAAI.

[26]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[27]  Shuicheng Yan,et al.  Latent Low-Rank Representation for subspace segmentation and feature extraction , 2011, 2011 International Conference on Computer Vision.

[28]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[29]  René Vidal,et al.  Subspace Clustering , 2011, IEEE Signal Processing Magazine.

[30]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  John Wright,et al.  Segmentation of Multivariate Mixed Data via Lossy Data Coding and Compression , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  René Vidal,et al.  A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Robert R. Bitmead,et al.  Subspace system identification for training-based MIMO channel estimation , 2005, Autom..

[35]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  René Vidal,et al.  Multiframe Motion Segmentation with Missing Data Using PowerFactorization and GPCA , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[37]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[38]  C. W. Gear,et al.  Multibody Grouping from Motion Images , 1998, International Journal of Computer Vision.

[39]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  T. Boult,et al.  Factorization-based segmentation of motions , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[41]  Jie Li,et al.  Low-Rank Approximation via Generalized Reweighted Iterative Nuclear and Frobenius Norms , 2020, IEEE Transactions on Image Processing.

[42]  Paul S. Bradley,et al.  k-Plane Clustering , 2000, J. Glob. Optim..

[43]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.