Taxonomy-Based Glyph Design—with a Case Study on Visualizing Workflows of Biological Experiments

Glyph-based visualization can offer elegant and concise presentation of multivariate information while enhancing speed and ease in visual search experienced by users. As with icon designs, glyphs are usually created based on the designers' experience and intuition, often in a spontaneous manner. Such a process does not scale well with the requirements of applications where a large number of concepts are to be encoded using glyphs. To alleviate such limitations, we propose a new systematic process for glyph design by exploring the parallel between the hierarchy of concept categorization and the ordering of discriminative capacity of visual channels. We examine the feasibility of this approach in an application where there is a pressing need for an efficient and effective means to visualize workflows of biological experiments. By processing thousands of workflow records in a public archive of biological experiments, we demonstrate that a cost-effective glyph design can be obtained by following a process of formulating a taxonomy with the aid of computation, identifying visual channels hierarchically, and defining application-specific abstraction and metaphors.

[1]  Matthew O. Ward,et al.  Multivariate Data Glyphs: Principles and Practice , 2008 .

[2]  Sougata Mukherjea,et al.  Glyphmaker: creating customized visualizations of complex data , 1994, Computer.

[3]  Falk Schreiber,et al.  Editing, validating and translating of SBGN maps , 2010, Bioinform..

[4]  L G Williams,et al.  The effects of target specification on objects fixated during visual search. , 1967, Acta psychologica.

[5]  Romain Bourqui,et al.  Visualizing Temporal Dynamics at the Genomic and Metabolic Level , 2009, 2009 13th International Conference Information Visualisation.

[6]  Anne E. Trefethen,et al.  Toward interoperable bioscience data , 2012, Nature Genetics.

[7]  Jeffrey N. Rouder,et al.  A Structural Account of Global and Local Processing , 1999, Cognitive Psychology.

[8]  S. Palmer Hierarchical structure in perceptual representation , 1977, Cognitive Psychology.

[9]  S. Imai,et al.  The free classification of analyzable and unanalyzable stimuli , 1972 .

[10]  P Cavanagh,et al.  Familiarity and pop-out in visual search , 1994, Perception & psychophysics.

[11]  Theo van Walsum,et al.  Iconic techniques for feature visualization , 1995, Proceedings Visualization '95.

[12]  Mandy L. Wilson,et al.  GenoCAD for iGEM: a grammatical approach to the design of standard-compliant constructs , 2010, Nucleic acids research.

[13]  Marc Green,et al.  Toward a Perceptual Science of Multidimensional Data Visualization : Bertin and Beyond , 1998 .

[14]  Irene Reppa,et al.  An Empirical Study on Using Visual Embellishments in Visualization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[16]  G W Humphreys,et al.  Visual search for targets defined by combinations of color, shape, and size: An examination of the task constraints on feature and conjunction searches , 1987, Perception & psychophysics.

[17]  Kathryn T. Spoehr,et al.  Visual Information Processing , 1982 .

[18]  P. Quinlan Visual feature integration theory: past, present, and future. , 2003, Psychological bulletin.

[19]  Martin B. Curry,et al.  Exploring the effects of icon characteristics on user performance: the role of icon concreteness, complexity, and distinctiveness. , 2000, Journal of experimental psychology. Applied.

[20]  S. Luck,et al.  Electrophysiological correlates of feature analysis during visual search. , 1994, Psychophysiology.

[21]  Falk Schreiber,et al.  VANTED: A system for advanced data analysis and visualization in the context of biological networks , 2006, BMC Bioinformatics.

[22]  Sarala M. Wimalaratne,et al.  The Systems Biology Graphical Notation , 2009, Nature Biotechnology.

[23]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[24]  George Sperling,et al.  The information available in brief visual presentations. , 1960 .

[25]  J. Bransford,et al.  Abstraction of visual patterns. , 1971, Journal of experimental psychology.

[26]  David E. Rumelhart,et al.  A multicomponent theory of the perception of briefly exposed visual displays , 1970 .

[27]  C. Read,et al.  Handbook of the normal distribution , 1982 .

[28]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[29]  Harri Siirtola,et al.  The effect of data-relatedness in interactive glyphs , 2005, Ninth International Conference on Information Visualisation (IV'05).

[30]  Min Chen,et al.  An Information-theoretic Framework for Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[31]  Oliver Hofmann,et al.  ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level , 2010, Bioinform..

[32]  Carol Sanger,et al.  Editing , 2020, Every Day I Write the Book.

[33]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[34]  Ulrich Neumann,et al.  VisualIDs: automatic distinctive icons for desktop interfaces , 2004, SIGGRAPH 2004.

[35]  Colin Potts,et al.  Design of Everyday Things , 1988 .

[36]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[37]  Peter Barker,et al.  Sign design guide : a guide to inclusive signage , 2002 .

[38]  A. Treisman Focused attention in the perception and retrieval of multidimensional stimuli , 1977 .

[39]  A. Tversky,et al.  Similarity of rectangles: An analysis of subjective dimensions , 1975 .

[40]  Tanya Barrett,et al.  Gene Expression Omnibus (GEO) , 2013 .

[41]  Carl-Fredrik Westin,et al.  Diffusion Tensor Visualization with Glyph Packing , 2006, IEEE Transactions on Visualization and Computer Graphics.

[42]  Kathleen Hemenway Psychological issues in the use of icons in command menus , 1982, CHI '82.

[43]  Jeffrey Heer,et al.  prefuse: a toolkit for interactive information visualization , 2005, CHI.

[44]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[45]  Jacques Bertin,et al.  Semiology of Graphics - Diagrams, Networks, Maps , 2010 .

[46]  Rayan Abdullah,et al.  Pictograms, icons & signs : a guide to information graphics , 2006 .

[47]  Raghu Krishnapuram,et al.  Automatic Taxonomy Generation: Issues and Possibilities , 2003, IFSA.

[48]  Stephen G. Eick,et al.  Information Rich Glyphs for Software Management Data , 1998, IEEE Computer Graphics and Applications.

[49]  R. Shepard Attention and the metric structure of the stimulus space. , 1964 .

[50]  Michael Gleicher,et al.  Glyph-based Overviews of Large Datasets in Structural Bioinformatics , 2007, 11th International Conference Information Visualization - Supplements (IV '07).

[51]  Paul Muter,et al.  The role of graphics in item selection from menus , 1986 .

[52]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[53]  Timo Ropinski,et al.  Survey of glyph-based visualization techniques for spatial multivariate medical data , 2011, Comput. Graph..

[54]  RopinskiTimo,et al.  Visual Computing in Biology and Medicine , 2011 .

[55]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[56]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[57]  D. Navon Forest before trees: The precedence of global features in visual perception , 1977, Cognitive Psychology.

[58]  Willa Kay Wiener-Ehrlich,et al.  The Relation Between Stimulus Analyzability and Perceived Dimensional Structure1 , 1978 .

[59]  Susan Wiedenbeck,et al.  The use of icons and labels in an end user application program: An empirical study of learning and retention , 1999, Behav. Inf. Technol..

[60]  David S. Ebert,et al.  The shape of Shakespeare: visualizing text using implicit surfaces , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[61]  James T. Enns,et al.  Attention and Visual Memory in Visualization and Computer Graphics , 2012, IEEE Transactions on Visualization and Computer Graphics.

[62]  J. Wolfe,et al.  The order of visual processing: “Top-down,” “bottom-up,” or “middle-out” , 1979, Perception & psychophysics.

[63]  H. Surtola,et al.  The effect of data-relatedness in interactive glyphs , 2005, Ninth International Conference on Information Visualisation (IV'05).

[64]  Harry L. Chiesi,et al.  Picture-word differences in decision latency: An analysis of single and dual memory models , 1977, Memory & cognition.