Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR

Abstract The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 ± 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55° N in eastern Canada and from 55 to 60° N in eastern Eurasia. Both of these regions are expected to warm > 3 °C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

[1]  Ranga B. Myneni,et al.  Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks , 2003 .

[2]  Paul W. Stackhouse,et al.  Climate-induced boreal forest change: Predictions versus current observations , 2007 .

[3]  Tomislav Hengl,et al.  How accurate and usable is GDEM? A statistical assessment of GDEM using LiDAR data , 2011 .

[4]  Dirk Pflugmacher,et al.  Comparison and assessment of coarse resolution land cover maps for Northern Eurasia , 2011 .

[5]  Joanne C. White,et al.  Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project , 2008 .

[6]  Alan H. Strahler,et al.  The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research , 1998, IEEE Trans. Geosci. Remote. Sens..

[7]  I. A. Pestunov,et al.  NOAA/AVHRR satellite detection of Siberian silkmoth outbreaks in eastern Siberia , 2004 .

[8]  L. Kaiser,et al.  Unbiased Estimation in Line-Intercept Sampling , 1983 .

[9]  Joanne C. White,et al.  National circumstances in the international circumboreal community , 2007 .

[10]  W. Kurz,et al.  Future Spruce Budworm Outbreak May Create a Carbon Source in Eastern Canadian Forests , 2010, Ecosystems.

[11]  R. Houghton,et al.  Mapping Russian forest biomass with data from satellites and forest inventories , 2007 .

[12]  Ross Nelson,et al.  Measuring biomass and carbon in delaware using an airborne profiling LIDAR , 2004 .

[13]  R. Nelson,et al.  Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. , 2008 .

[14]  M. Lefsky A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System , 2010 .

[15]  M. Harmon,et al.  Carbon Storage and Sequestration in the Russian Forest Sector , 2011 .

[16]  Guido Grosse,et al.  Vulnerability of high‐latitude soil organic carbon in North America to disturbance , 2011 .

[17]  Terje Gobakken,et al.  Lidar sampling — Using an airborne profiler to estimate forest biomass in Hedmark County, Norway , 2012 .

[18]  M. Hansen,et al.  Quantification of global gross forest cover loss , 2010, Proceedings of the National Academy of Sciences.

[19]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .

[20]  D. Roy,et al.  Global Mapping of Fire-affected Areas using Multitemporal MODIS Data: The MCD45 Product , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[21]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[22]  E. Parfenova,et al.  Climate change and climate-induced hot spots in forest shifts in central Siberia from observed data , 2011 .

[23]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[24]  E. Næsset,et al.  Assessing effects of positioning errors and sample plot size on biophysical stand properties derived from airborne laser scanner data. , 2009 .

[25]  Göran Ståhl,et al.  Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area , 2011 .

[26]  J. Canadell,et al.  Soil organic carbon pools in the northern circumpolar permafrost region , 2009 .

[27]  D. Riaño,et al.  Quantifying burned area for North American forests: Implications for direct reduction of carbon stocks , 2011 .

[28]  W. Kurz,et al.  Mountain pine beetle and forest carbon feedback to climate change , 2008, Nature.

[29]  A. Isaev,et al.  Carbon stock and deposition in phytomass of the Russian forests , 1995 .

[30]  K. Ranson,et al.  Forest vertical structure from GLAS : An evaluation using LVIS and SRTM data , 2008 .

[31]  Göran Ståhl,et al.  Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County, NorwayThis article is one of a selection of papers from Extending Forest Inventory and Monitoring over Space and Time. , 2011 .

[32]  S. Nilsson,et al.  A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998 , 2003 .

[33]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .

[34]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[35]  Scott J. Goetz,et al.  Ecosystem responses to recent climate change and fire disturbance at northern high latitudes: observations and model results contrasting northern Eurasia and North America , 2007 .

[36]  Werner A. Kurz,et al.  A 70-YEAR RETROSPECTIVE ANALYSIS OF CARBON FLUXES IN THE CANADIAN FOREST SECTOR , 1999 .

[37]  Damien Sulla-Menashe,et al.  MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets , 2010 .

[38]  K. Ranson,et al.  Wildfires dynamic in the larch dominance zone , 2008 .

[39]  Guoqing Sun,et al.  Use of ICESat GLAS data for forest disturbance studies in central Siberia , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[40]  G. Powell,et al.  Terrestrial Ecoregions of the World: A New Map of Life on Earth , 2001 .

[41]  R. Nelson,et al.  Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County, Norway , 2011 .

[42]  Göran Ståhl,et al.  Estimating Quebec provincial forest resources using ICESat/GLAS , 2009 .

[43]  R. Houghton,et al.  Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon , 2000, Nature.

[44]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[45]  R. K. Dixon,et al.  Carbon Pools and Flux of Global Forest Ecosystems , 1994, Science.

[46]  Ross Nelson,et al.  Model effects on GLAS-based regional estimates of forest biomass and carbon , 2010 .

[47]  J. Wickham,et al.  Completion of the 2001 National Land Cover Database for the conterminous United States , 2007 .

[48]  R. Nelson,et al.  Estimating Siberian timber volume using MODIS and ICESat/GLAS. , 2009 .

[49]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[50]  F. Rocca,et al.  The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle , 2011 .

[51]  Thierry Toutin,et al.  ASTER DEMs for geomatic and geoscientific applications: a review , 2008 .

[52]  Will Steffen,et al.  Saturation of the terrestrial carbon sink , 2007 .

[53]  Zengyuan Li,et al.  Effects of forest spatial structure on large footprint lidar waveform , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[54]  Peter R. J. North,et al.  Vegetation height estimates for a mixed temperate forest using satellite laser altimetry , 2008 .

[55]  Natascha Kljun,et al.  Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data , 2012 .

[56]  D. Harding,et al.  ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure , 2005 .

[57]  Guoqing Sun,et al.  Landcover attributes from ICESat GLAS data in Central Siberia , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[58]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[59]  F. Raulier,et al.  Canadian national tree aboveground biomass equations , 2005 .

[60]  R. Birdsey,et al.  Carbon storage in forests and peatlands of Russia , 1998 .

[61]  Takashi Oguchi,et al.  Comparison of new and existing global digital elevation models: ASTER G‐DEM and SRTM‐3 , 2008 .

[62]  Ross Nelson,et al.  A Portable Airborne Laser System for Forest Inventory , 2003 .

[63]  Steffen Fritz,et al.  A new hybrid land cover dataset for Russia: a methodology for integrating statistics, remote sensing and in situ information , 2011 .

[64]  J. Hansen,et al.  Global temperature change , 2006, Proceedings of the National Academy of Sciences.

[65]  Ronald E. McRoberts,et al.  Effects of uncertainty in model predictions of individual tree volume on large area volume estimates , 2014 .

[66]  Martin Herold,et al.  Some challenges in global land cover mapping : An assessment of agreement and accuracy in existing 1 km datasets , 2008 .

[67]  David J. Selkowitz,et al.  Thematic accuracy of the National Land Cover Database (NLCD) 2001 land cover for Alaska , 2011 .

[68]  Alan H. Strahler,et al.  Global land cover mapping from MODIS: algorithms and early results , 2002 .

[69]  Johann G. Goldammer,et al.  Boreal Forest Fire Regimes And Climate Change , 2001 .

[70]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[71]  Pascale Ropars,et al.  Shrub expansion at the forest–tundra ecotone: spatial heterogeneity linked to local topography , 2012 .

[72]  Christopher B. Field,et al.  FOREST CARBON SINKS IN THE NORTHERN HEMISPHERE , 2002 .