Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition

[1]  anonymous In Review , 2018 .

[2]  F. Prinz,et al.  Building upon the Koutecky-Levich Equation for Evaluation of Next-Generation Oxygen Reduction Reaction Catalysts , 2017 .

[3]  C. Detavernier,et al.  Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition , 2017, Nature Communications.

[4]  S. Bent,et al.  Nanoengineering Heterogeneous Catalysts by Atomic Layer Deposition. , 2017, Annual review of chemical and biomolecular engineering.

[5]  K. Jiang,et al.  Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires , 2017, Science Advances.

[6]  Qinghua Zhang,et al.  Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction , 2016, Science.

[7]  Yayuan Liu,et al.  Direct and continuous strain control of catalysts with tunable battery electrode materials , 2016, Science.

[8]  Anusorn Kongkanand,et al.  The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. , 2016, The journal of physical chemistry letters.

[9]  Jean-Pol Dodelet,et al.  Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. , 2016, Chemical reviews.

[10]  M. Verheijen,et al.  Surface infrared spectroscopy during low temperature growth of supported Pt Nanoparticles by atomic layer deposition , 2016 .

[11]  Kun Jiang,et al.  Carbon monoxide mediated chemical deposition of Pt or Pd quasi-monolayer on Au surfaces with superior electrocatalysis for ethanol oxidation in alkaline media. , 2016, Chemical communications.

[12]  S. Bent,et al.  Formation of Continuous Pt Films on the Graphite Surface by Atomic Layer Deposition with Reactive O3 , 2015 .

[13]  M. Chi,et al.  Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets , 2015, Science.

[14]  R. Li,et al.  Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts , 2015 .

[15]  F. Roozeboom,et al.  Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices , 2015 .

[16]  David H. K. Jackson,et al.  Catalyst Design with Atomic Layer Deposition , 2015 .

[17]  Zhongwei Chen,et al.  Morphology and composition controlled platinum–cobalt alloy nanowires prepared by electrospinning as oxygen reduction catalyst , 2014 .

[18]  R. Li,et al.  High stability and activity of Pt electrocatalyst on atomic layer deposited metal oxide/nitrogen-doped graphene hybrid support , 2014 .

[19]  T. Hatanaka,et al.  Fabrication and Cell Analysis of a Pt/SiO2 Platinum Thin Film Electrode , 2014 .

[20]  Karren L. More,et al.  Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces , 2014, Science.

[21]  Yu Zhang,et al.  High Performance Pt Monolayer Catalysts Produced via Core-Catalyzed Coating in Ethanol , 2014 .

[22]  Yadong Li,et al.  Ultrathin rhodium nanosheets , 2014, Nature Communications.

[23]  Qing Du,et al.  Pt@Nb-TiO2 catalyst membranes fabricated by electrospinning and atomic layer deposition , 2014 .

[24]  M. Fayette,et al.  Growth of Pt by surface limited redox replacement of underpotentially deposited hydrogen , 2013 .

[25]  C. Detavernier,et al.  Low-Temperature Atomic Layer Deposition of Platinum Using (Methylcyclopentadienyl)trimethylplatinum and Ozone , 2013 .

[26]  R. Behm,et al.  Electrodeposition of a Pt monolayer film: using kinetic limitations for atomic layer epitaxy. , 2013, Journal of the American Chemical Society.

[27]  Y. Shao-horn,et al.  Site-selective deposition of twinned platinum nanoparticles on TiSi2 nanonets by atomic layer deposition and their oxygen reduction activities. , 2013, ACS nano.

[28]  A. Bol,et al.  Room-Temperature Atomic Layer Deposition of Platinum , 2013 .

[29]  J. Ekerdt,et al.  Effect of CO on Ru Nucleation and Ultra-Smooth Thin Film Growth by Chemical Vapor Deposition at Low Temperature , 2013 .

[30]  M. Ritala,et al.  Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants , 2013 .

[31]  Pengyi Zhang,et al.  Growth Inhibitor To Homogenize Nucleation and Obtain Smooth HfB2 Thin Films by Chemical Vapor Deposition , 2013 .

[32]  U. Bertocci,et al.  Self-Terminating Growth of Platinum Films by Electrochemical Deposition , 2012, Science.

[33]  S. George,et al.  Growth of continuous and ultrathin platinum films on tungsten adhesion layers using atomic layer deposition techniques , 2012 .

[34]  Mark K. Debe,et al.  Electrocatalyst approaches and challenges for automotive fuel cells , 2012, Nature.

[35]  Ib Chorkendorff,et al.  The effect of size on the oxygen electroreduction activity of mass-selected platinum nanoparticles. , 2012, Angewandte Chemie.

[36]  Ib Chorkendorff,et al.  Understanding the electrocatalysis of oxygen reduction on platinum and its alloys , 2012 .

[37]  G. Xiao,et al.  Coking- and Sintering-Resistant Palladium Catalysts Achieved Through Atomic Layer Deposition , 2012, Science.

[38]  M. Arenz,et al.  The particle size effect on the oxygen reduction reaction activity of Pt catalysts: influence of electrolyte and relation to single crystal models. , 2011, Journal of the American Chemical Society.

[39]  Ping Liu,et al.  Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. , 2011, Journal of the American Chemical Society.

[40]  R. Li,et al.  Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells , 2011 .

[41]  Minhua Shao,et al.  Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. , 2011, Nano letters.

[42]  Ping Liu,et al.  Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. , 2010, Angewandte Chemie.

[43]  V. Misra,et al.  Platinum Nanoparticles Grown by Atomic Layer Deposition for Charge Storage Memory Applications , 2010 .

[44]  Seung Min Kim,et al.  Genesis and Evolution of Surface Species during Pt Atomic Layer Deposition on Oxide Supports Characterized by in Situ XAFS Analysis and Water−Gas Shift Reaction , 2010 .

[45]  Jun Zhang,et al.  Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra. , 2010, Nano letters.

[46]  Lijun Wu,et al.  Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. , 2009, Journal of the American Chemical Society.

[47]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  Xiaoping Qian,et al.  General three-dimensional image simulation and surface reconstruction in scanning probe microscopy using a dexel representation. , 2007, Ultramicroscopy.

[49]  M. Mavrikakis,et al.  Platinum Monolayer Fuel Cell Electrocatalysts , 2007 .

[50]  Gregory A. Dahlen,et al.  Advanced CD-AFM probe tip shape characterization for metrology accuracy and throughput , 2007, SPIE Advanced Lithography.

[51]  Wilfried Vandervorst,et al.  Island growth as a growth mode in atomic layer deposition: A phenomenological model , 2004 .

[52]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[53]  Junliang Zhang,et al.  Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles , 2004 .

[54]  M. Ritala,et al.  Atomic Layer Deposition of Platinum Thin Films , 2003 .

[55]  H. Abruña,et al.  Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. , 2001, Chemical reviews.

[56]  H. Freund,et al.  High-Pressure Carbon Monoxide Adsorption on Pt(111) Revisited: A Sum Frequency Generation Study † , 2001 .

[57]  Tatsuhiro Okada,et al.  Theory for water management in membranes for polymer electrolyte fuel cells: Part 1. The effect of impurity ions at the anode side on the membrane performances , 1999 .

[58]  T. Okada Theory for water management in membranes for polymer electrolyte fuel cells , 1999 .

[59]  J. Villarrubia Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation , 1997, Journal of research of the National Institute of Standards and Technology.

[60]  R. Egerton,et al.  EELS log-ratio technique for specimen-thickness measurement in the TEM. , 1988, Journal of electron microscopy technique.

[61]  H. Ibach,et al.  On the adsorption of CO on Pt(111) , 1982 .

[62]  M. Primet Infrared study of CO adsorbed on Pt/Al2O3. A method for determining metal-adsorbate interactions , 1973 .

[63]  이기수,et al.  II , 1856, My Karst and My City and Other Essays.

[64]  R. Li,et al.  Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area‐Selective Atomic Layer Deposition for the Oxygen Reduction Reaction , 2015, Advanced materials.

[65]  Jason W. Zack,et al.  Oxygen Reduction Reaction Measurements on Platinum Electrocatalysts Utilizing Rotating Disk Electrode Technique II. Influence of Ink Formulation, Catalyst Layer Uniformity and Thickness , 2015 .

[66]  C. Detavernier,et al.  Reactor concepts for atomic layer deposition on agitated particles: A review , 2014 .