Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates

Surgical microscopes are vital tools for ophthalmic surgeons. The recent development of an integrated OCT system for the first time allows to look at tissue features below the surface. Hence, these systems can drastically improve the quality and reduce the risk of surgical interventions. However, current commercial OCT-enhanced ophthalmic surgical microscopes provide only one additional cross sectional view to the standard microscope image and feature a low update rate. To present volumetric data at a high update rate, much faster OCT systems than the ones applied in today’s surgical microscopes need to be developed. We demonstrate live volumetric retinal OCT imaging, which may provide a sufficiently large volume size (330x330x595 Voxel) and high update frequency (24.2 Hz) such that the surgeon may even purely rely on the OCT for certain surgical maneuvers. It represents a major technological step towards the possible application of OCT-only surgical microscopes in the future which would be much more compact thus enabling many additional minimal invasive applications. We show that multi-MHz A-scan rates are essential for such a device. Additionally, advanced phase-based OCT techniques require 3D OCT volumes to be detected with a stable optical phase. These techniques can provide additional functional information of the retina. Up to now, classical OCT was to slow for this, so our system can pave the way to holographic OCT with a traditional confocal flying spot approach. For the first time, we present point scanning volumetric OCT imaging of the posterior eye with up to 191.2 Hz volume rate. We show that this volume rate is high enough to enable a sufficiently stable optical phase to a level, where remaining phase errors can be corrected. Applying advanced post processing concepts for numerical refocusing or computational adaptive optics should be possible in future with such a system.

[1]  Kohji Ohbayashi,et al.  Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second , 2012, Biomedical optics express.

[2]  G. Hüttmann,et al.  In vivo optical imaging of physiological responses to photostimulation in human photoreceptors , 2016, Proceedings of the National Academy of Sciences.

[3]  M. Maier,et al.  Intraoperative optische Kohärenztomographie bei Ablatio retinae , 2016, Der Ophthalmologe.

[4]  Theo Lasser,et al.  Video-rate three-dimensional optical coherence tomography. , 2002, Optics express.

[5]  Wolfgang Wieser,et al.  Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle. , 2015, Biomedical optics express.

[6]  Nicolas Godbout,et al.  Combined optical coherence tomography and hyperspectral imaging using a double-clad fiber coupler , 2016, Journal of biomedical optics.

[7]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[8]  Eva Lankenau,et al.  Optical coherence tomography with online visualization of more than seven rendered volumes per second. , 2010, Journal of biomedical optics.

[9]  Kevin Wong,et al.  Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering , 2013, Journal of biomedical optics.

[10]  Xoana G. Troncoso,et al.  Microsaccades: a neurophysiological analysis , 2009, Trends in Neurosciences.

[11]  A. Fercher,et al.  In vivo optical coherence tomography. , 1993, American journal of ophthalmology.

[12]  J. Duker,et al.  Imaging of macular diseases with optical coherence tomography. , 1995, Ophthalmology.

[13]  S. Farsiu,et al.  Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography , 2016, Scientific Reports.

[14]  Mohamed T. El-Haddad,et al.  Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers. , 2015, Biomedical optics express.

[15]  Gesa Franke,et al.  Aberration-free volumetric high-speed imaging of in vivo retina , 2016, Scientific Reports.

[16]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.

[17]  Eva Lankenau,et al.  Optimising deep anterior lamellar keratoplasty (DALK) using intraoperative online optical coherence tomography (iOCT) , 2014, British Journal of Ophthalmology.

[18]  Dudley A. Williams,et al.  Optical properties of water in the near infrared. , 1974 .

[19]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[20]  Eva Lankenau,et al.  Optimizing descemet membrane endothelial keratoplasty using intraoperative optical coherence tomography. , 2013, JAMA ophthalmology.

[21]  J. Fujimoto,et al.  Optical coherence microscopy in scattering media. , 1994, Optics letters.

[22]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[23]  Joseph A Izatt,et al.  Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. , 2010, Optics letters.

[24]  Günther Hannesschläger,et al.  Optical Coherence Tomography – Applications in Non- Destructive Testing and Evaluation , 2013 .

[25]  Kirill V. Larin,et al.  Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography. , 2015, Optics letters.

[26]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[27]  Wolfgang Wieser,et al.  Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation. , 2008, Optics letters.

[28]  Wolfgang Wieser,et al.  Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. , 2010, Optics express.

[29]  Gijs van Soest,et al.  Heartbeat OCT and Motion-Free 3D In Vivo Coronary Artery Microscopy. , 2016, JACC. Cardiovascular imaging.

[30]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[31]  Joseph A. Izatt,et al.  Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography , 2016, Biomedical optics express.

[32]  Joseph A. Izatt,et al.  High-speed 4D intrasurgical OCT at 800 kHz line rate using temporal spectral splitting and spiral scanning (Conference Presentation) , 2017, BiOS.

[33]  Joseph A. Izatt,et al.  Impact of Microscope-Integrated OCT on Ophthalmology Resident Performance of Anterior Segment Surgical Maneuvers in Model Eyes , 2016, Investigative ophthalmology & visual science.

[34]  Gesa Franke,et al.  Imaging pulse wave propagation in human retinal vessels using full-field swept-source optical coherence tomography. , 2015, Optics letters.

[35]  Florian Willomitzer,et al.  Single-shot 3D motion picture camera with a dense point cloud. , 2017, Optics express.

[36]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[37]  Kang Zhang,et al.  Real-time 4D signal processing and visualization using graphics processing unit on a regular nonlinear-k Fourier-domain OCT system , 2010, Optics express.

[38]  Marcus Ang,et al.  Intraoperative anterior segment optical coherence tomography: a novel assessment tool during deep anterior lamellar keratoplasty. , 2014, American journal of ophthalmology.

[39]  Carranza Díaz,et al.  Espectroscopía de reflectancia difusa – NIR para la determinación del contenido de agua en el suelo , 2020 .

[40]  Zhuolin Liu,et al.  Adaptive optics optical coherence tomography at 1 MHz. , 2014, Biomedical optics express.

[41]  A. Kampik,et al.  Multi-MHz retinal OCT. , 2013, Biomedical optics express.

[42]  W. Drexler,et al.  Line-field parallel swept source MHz OCT for structural and functional retinal imaging. , 2015, Biomedical optics express.

[43]  Martin F. Kraus,et al.  Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology , 2013, Photonics West - Biomedical Optics.

[44]  J M Schmitt,et al.  Subsurface imaging of living skin with optical coherence microscopy. , 1995, Dermatology.

[45]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[46]  A. Holcombe Seeing slow and seeing fast: two limits on perception , 2009, Trends in Cognitive Sciences.

[47]  Martin Gröschl,et al.  Wide-Field OCT Angiography at 400 KHz Utilizing Spectral Splitting , 2014 .

[48]  Jean-Michel Morel,et al.  Non-Local Means Denoising , 2011, Image Process. Line.

[49]  Stephen A. Boppart,et al.  Real-time in vivo computed optical interferometric tomography , 2013, Nature Photonics.

[50]  Robert B. Miller,et al.  Response time in man-computer conversational transactions , 1899, AFIPS Fall Joint Computing Conference.

[51]  Sunil K Srivastava,et al.  Intraoperative spectral-domain optical coherence tomography during complex retinal detachment repair. , 2011, Ophthalmic surgery, lasers & imaging : the official journal of the International Society for Imaging in the Eye.

[52]  Wolfgang Wieser,et al.  High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. , 2014, Biomedical optics express.

[53]  Nathan D. Shemonski,et al.  Computational high-resolution optical imaging of the living human retina , 2015, Nature Photonics.

[54]  Anthony N Kuo,et al.  Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT , 2016, Biomedical optics express.

[55]  Peter Koch,et al.  Reduction of frame rate in full-field swept-source optical coherence tomography by numerical motion correction [Invited]. , 2017, Biomedical optics express.

[56]  Michael Kaschke,et al.  Optical Devices in Ophthalmology and Optometry: Technology, Design Principles and Clinical Applications , 2014 .

[57]  Ruikang K. Wang,et al.  4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source. , 2015, Optics letters.

[58]  Stephen A. Boppart,et al.  A computational approach to high-resolution imaging of the living human retina without hardware adaptive optics , 2015, Photonics West - Biomedical Optics.

[59]  Benjamin J Vakoc,et al.  Multimodality optical imaging of embryonic heart microstructure. , 2007, Journal of biomedical optics.

[60]  R. Page,et al.  The US Food and Drug Administration Premarket Approval Process and the 515 Program Initiative: View From a Panel Chair. , 2016, JAMA cardiology.

[61]  B Junker,et al.  [Intraoperative optical coherence tomography in retinal detachment]. , 2016, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[62]  Wolfgang Drexler,et al.  High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT , 2015, Photonics West - Biomedical Optics.

[63]  Sina Farsiu,et al.  Visualization of Real-Time Intraoperative Maneuvers with a Microscope-Mounted Spectral Domain Optical Coherence Tomography System , 2013, Retina.