Scaled Gromov hyperbolic graphs

In this paper, the δ-hyperbolic concept, originally developed for infinite graphs, is adapted to very large but finite graphs. Such graphs can indeed exhibit properties typical of negatively curved spaces, yet the traditional δ-hyperbolic concept, which requires existence of an upper bound on the fatness δ of the geodesic triangles, is unable to capture those properties, as any finite graph has finite δ. Here the idea is to scale δ relative to the diameter of the geodesic triangles and use the Cartan-AlexandrovToponogov (CAT) theory to derive the thresholding value of δ/diam below which the geometry has negative curvature properties.

[1]  Xingxing Yu,et al.  Positively curved cubic plane graphs are finite , 2004, J. Graph Theory.

[2]  May,et al.  A Concise Course in Algebraic Topology , 1999 .

[3]  E. Jonckheere Contrôle du trafic sur les réseaux à géométrie hyperbolique : Vers une théorie géométrique de la sécurité de l'acheminement de l'information , 2003 .

[4]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[5]  Jürgen Jost,et al.  Nonpositive Curvature: Geometric And Analytic Aspects , 1997 .

[6]  Feng Luo COMBINATORIAL YAMABE FLOW ON SURFACES , 2003 .

[7]  Michael Kapovich,et al.  Hyperbolic Manifolds and Discrete Groups , 2000 .

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  Yusuke Higuchi Combinatorial curvature for planar graphs , 2001 .

[10]  M. Berger Riemannian Geometry During the Second Half of the Twentieth Century , 2000 .

[11]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[12]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[13]  Jean-Pierre Eckmann,et al.  Curvature of co-links uncovers hidden thematic layers in the World Wide Web , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[15]  Bojan Mohar,et al.  An analogue of the Descartes-Euler formula for infinite graphs and Higuchi’s conjecture , 2007 .

[16]  John Roe,et al.  Index theory, coarse geometry, and topology of manifolds , 1996 .

[17]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[18]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[19]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[20]  J. Jost Riemannian geometry and geometric analysis , 1995 .