Semiconductor nanostructures in biological applications

Semiconductor nanostructures in biological applications are discussed. Results are presented on the use of colloidal semiconductor quantum dots both as biological tags and as structures that interact with and influence biomolecules. Results are presented on the use of semiconducting carbon nanotubes in biological applications.

[1]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[2]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[3]  Yang Li,et al.  Binding of semiconductor quantum dots to cellular integrins , 2004, IEEE Transactions on Nanotechnology.

[4]  J. A. Sanjurjo,et al.  Quantum confinement effects on the optical phonons of CdTe quantum dots , 1998 .

[5]  P. Guyot-Sionnest,et al.  Interband and Intraband Optical Studies of PbSe Colloidal Quantum Dots , 2002 .

[6]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[7]  Norbert F. Scherer,et al.  Charge Transfer Across the Nanocrystalline-DNA Interface: Probing DNA Recognition , 2004 .

[8]  Jörg Maser,et al.  Biology of TiO2–oligonucleotide nanocomposites , 2003, Nature materials.

[9]  G. Schuster,et al.  Long-range charge transfer in DNA: transient structural distortions control the distance dependence. , 2000, Accounts of chemical research.

[10]  Ladislav Kavan,et al.  Electrochemical Tuning of Electronic Structure of Single-Walled Carbon Nanotubes: In-situ Raman and Vis-NIR Study , 2001 .

[11]  Jianbin Xu,et al.  Self-assembly and photoluminescence of CdS-mercaptoacetic clusters with internal structures , 2000 .

[12]  E. Conwell,et al.  Polarons in DNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[14]  D. P. Fromm,et al.  Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior , 2000 .

[15]  Mitra Dutta,et al.  Phonons in Nanostructures , 2001 .

[16]  Ian M. Kennedy,et al.  Observation of quantum confined excited states of GaN nanocrystals , 1998 .

[17]  F. Kasten Introduction to Fluorescent Probes: Properties, History and Applications , 1999 .

[18]  J. Jerphagnon,et al.  Invariants of the Third-Rank Cartesian Tensor: Optical Nonlinear Susceptibilities , 1970 .

[19]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[20]  S. Nie,et al.  Luminescent quantum dots for multiplexed biological detection and imaging. , 2002, Current opinion in biotechnology.

[21]  Mitra Dutta,et al.  Potential Applications of Carbon Nanotubes in Bioengineering , 2004 .

[22]  Alan J. Heeger,et al.  Soliton excitations in polyacetylene , 1980 .

[23]  M. Bruchez,et al.  Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots , 2003, Nature Biotechnology.

[24]  Oleg G. Poluektov,et al.  Improving Optical and Charge Separation Properties of Nanocrystalline TiO2 by Surface Modification with Vitamin C , 1999 .

[25]  Tijana Rajh,et al.  Surface Restructuring of Nanoparticles: An Efficient Route for Ligand−Metal Oxide Crosstalk , 2002 .

[26]  Norris,et al.  Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. , 1996, Physical review letters.

[27]  Jing Guo,et al.  High-field quasiballistic transport in short carbon nanotubes. , 2003, Physical review letters.

[28]  Moonsub Shim,et al.  Highly Efficient Gating and Doping of Carbon Nanotubes with Polymer Electrolytes , 2004 .

[29]  Mitra Dutta,et al.  Continuum model for acoustic phonons in nanotubes: phonon bottleneck , 2004 .

[30]  R. Liboff Introductory quantum mechanics , 1980 .

[31]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[32]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[33]  Thomas M. Jovin,et al.  Quantum dots finally come of age , 2003, Nature Biotechnology.

[34]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[35]  P. Avouris,et al.  Multishell conduction in multiwalled carbon nanotubes , 2002 .

[36]  Arthur J. Nozik,et al.  Synthesis, structure, and optical properties of colloidal GaN quantum dots , 1999 .

[37]  E Ruoslahti,et al.  RGD and other recognition sequences for integrins. , 1996, Annual review of cell and developmental biology.

[38]  H. Kleinman,et al.  Neuronal laminins and their cellular receptors. , 1997, The international journal of biochemistry & cell biology.

[39]  M. Meyyappan,et al.  Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA Detection , 2003 .

[40]  Jianping Lu,et al.  Carbon nanotubes and nanotube-based nano devices , 1998 .

[41]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Matthew Mauro,et al.  Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein , 2000 .

[43]  E. M. Conwell,et al.  Polaron Motion in DNA , 2001 .

[44]  Richard O. Hynes,et al.  Integrins: Versatility, modulation, and signaling in cell adhesion , 1992, Cell.

[45]  Eoin P. O'Reilly,et al.  Theory of the electronic structure of GaN/AlN hexagonal quantum dots , 2000 .

[46]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[47]  Patel,et al.  Vibronic quantum beats in PbS microcrystallites. , 1993, Physical review. B, Condensed matter.

[48]  Mitra Dutta,et al.  Biological Nanostructures and Applications of Nanostructures in Biology , 2013 .

[49]  Jessica O. Winter,et al.  Recognition Molecule Directed Interfacing Between Semiconductor Quantum Dots and Nerve Cells , 2001 .

[50]  Chen Chen,et al.  Surface-optical phonon assisted transitions in quantum dots , 2004 .

[51]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[52]  Stephan W Koch,et al.  Semiconductor Quantum Dots , 1993 .

[53]  Mitra Dutta,et al.  Quantized acoustic vibrations of single-wall carbon nanotube , 2003 .

[54]  G. Mizejewski,et al.  Role of integrins in cancer: survey of expression patterns. , 1999, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[55]  V. Vasić,et al.  Transient bleaching of small lead sulfide colloids: influence of surface properties , 1990 .

[56]  M. Shim,et al.  Functionalization of Carbon Nanotubes for Biocompatibility and Biomolecular Recognition , 2002 .

[57]  Cengiz S. Ozkan,et al.  Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device Applications , 2003 .

[58]  J. Matthew Mauro,et al.  Long-term multiple color imaging of live cells using quantum dot bioconjugates , 2003, Nature Biotechnology.

[59]  T. Nussbaumer,et al.  Electrochemical carbon nanotube field-effect transistor , 2000, cond-mat/0009171.

[60]  A Javey,et al.  Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. , 2001, Journal of the American Chemical Society.

[61]  Erica Klarreich,et al.  Biologists join the dots , 2001, Nature.

[62]  Philippe Guyot-Sionnest,et al.  Polar CdSe nanocrystals: Implications for electronic structure , 1997 .

[63]  Mitra Dutta,et al.  Quantized optical vibrational modes of finite-length multi wall nanotubes: optical deformation potential , 2004 .

[64]  Philippe Rostaing,et al.  Diffusion Dynamics of Glycine Receptors Revealed by Single-Quantum Dot Tracking , 2003, Science.