Switching characteristics of an InP photonic crystal nanocavity: experiment and theory.

The dynamical properties of an InP photonic crystal nanocavity are experimentally investigated using pump-probe techniques and compared to simulations based on coupled-mode theory. Excellent agreement between experimental results and simulations is obtained when employing a rate equation model containing three time constants, that we interpret as the effects of fast carrier diffusion from an initially localized carrier distribution and the slower effects of surface recombination and bulk recombination. The variation of the time constants with parameters characterizing the nanocavity structure is investigated. The model is further extended to evaluate the importance of the fast and slow carrier relaxation processes in relation to patterning effects in the device, as exemplified by the case of all-optical wavelength conversion.

[1]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[2]  Masaya Notomi,et al.  Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. , 2005, Optics letters.

[3]  Jesper Mørk,et al.  Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity , 2013 .

[4]  G. Roelkens,et al.  Hybrid III-V semiconductor/silicon nanolaser. , 2011, Optics express.

[5]  Masaya Notomi,et al.  Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities. , 2013, Optics express.

[6]  I. Sagnes,et al.  Fast all-optical 10 Gb/s NRZ wavelength conversion and power limiting function using hybrid InP on SOI nanocavity , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[7]  Shanhui Fan,et al.  Coupling of modes analysis of resonant channel add-drop filters , 1999 .

[8]  Jesper Mørk,et al.  Improved switching using Fano resonances in photonic crystal structures. , 2013, Optics letters.

[9]  Jing Xu,et al.  Wavelength Conversion of a 9.35-Gb/s RZ OOK Signal in an InP Photonic Crystal Nanocavity , 2014, IEEE Photonics Technology Letters.

[10]  Sylvain Combrié,et al.  Ultrafast all-optical modulation in GaAs photonic crystal cavities , 2009 .

[11]  Masaya Notomi,et al.  Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities , 2007 .

[12]  Masaya Notomi,et al.  Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip , 2011, IET Circuits Devices Syst..

[13]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[14]  Oskar Painter,et al.  Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. , 2005, Optics express.

[15]  M. Iodice,et al.  Temperature dependence of the thermo-optic coefficient of InP, GaAs, and SiC from room temperature to 600 K at the wavelength of 1.5 μm , 2000 .

[16]  J. Leuthold,et al.  Optical communications: Modulation at femtojoule scale , 2010 .

[17]  Jing Xu,et al.  Investigation of Patterning Effects in Ultrafast SOA-Based Optical Switches , 2010, IEEE Journal of Quantum Electronics.

[18]  Nonlinear carrier dynamics in a quantum dash optical amplifier , 2011, 1111.2757.

[19]  Two-color switching and wavelength conversion at 10 GHz using a Photonic Crystal molecule , 2013, CLEO: 2013.

[20]  Min Qiu,et al.  Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. , 2004, Optics express.

[21]  Richard A. Soref,et al.  Carrier-induced change in refractive index of InP, GaAs and InGaAsP , 1990 .

[22]  Sylvain Combrié,et al.  Photonic crystal membrane waveguides with low insertion losses , 2009 .

[23]  M. Notomi,et al.  Carrier Diffusion and Recombination in Photonic Crystal Nanocavity Optical Switches , 2008, Journal of Lightwave Technology.

[24]  Liam O'Faolain,et al.  Compact Optical Switches and Modulators Based on Dispersion Engineered Photonic Crystals , 2010, IEEE Photonics Journal.

[25]  Xiaodong Yang,et al.  Coupled-mode theory for stimulated Raman scattering in high-Q/V(m) silicon photonic band gap defect cavity lasers. , 2007, Optics express.

[26]  J. Mørk,et al.  Experimental demonstration of a four-port photonic crystal cross-waveguide structure , 2012 .

[27]  Shoichiro Oda,et al.  Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation. , 2008, Optics express.

[28]  Christian Moormann,et al.  High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators. , 2007, Optics letters.

[29]  S. Guha,et al.  Temperature- and wavelength-dependent two-photon and free-carrier absorption in GaAs, InP, GaInAs, and InAsP , 2011 .

[30]  S. Combrie,et al.  Ultrafast all-optical modulation in GaAs photonic crystal cavities , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[31]  Shapira,et al.  Picosecond time-resolved luminescence studies of surface and bulk recombination processes in InP. , 1992, Physical review. B, Condensed matter.

[32]  Masaya Notomi,et al.  Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. , 2009, Optics express.

[33]  T. Krauss,et al.  Ultracompact and low-power optical switch based on silicon photonic crystals. , 2008, Optics letters.

[34]  O Wada,et al.  Recent Progress in Semiconductor-Based Photonic Signal-Processing Devices , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  F. Diederich,et al.  All-optical high-speed signal processing with silicon–organic hybrid slot waveguides , 2009 .

[36]  Heinrich Kurz,et al.  25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. , 2008, Optics express.

[37]  Jesper Mørk,et al.  Energy-bandwidth trade-off in all-optical photonic crystal microcavity switches. , 2011, Optics express.

[38]  Oskar Painter,et al.  Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. , 2006, Optics express.

[39]  S Hughes,et al.  Generalized effective mode volume for leaky optical cavities. , 2012, Optics letters.

[40]  A. de Rossi,et al.  Schottky MSM junctions for carrier depletion in silicon photonic crystal microcavities. , 2013, Optics express.

[41]  J. Mørk,et al.  Optimal switching using coherent control , 2013 .

[42]  Masaya Notomi,et al.  Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity. , 2009, Optics express.

[43]  T. W. Berg,et al.  Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices , 2001, IEEE Photonics Technology Letters.

[44]  F. Mollot,et al.  Two-photon absorption in InP substrates in the 1.55μm range , 2004 .

[45]  A. Rossi,et al.  Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity , 2008, 0812.2058.