Analysis, Design, and Generalization of Electrochemical Impedance Spectroscopy (EIS) Inversion Algorithms

We introduce a framework for analyzing and designing EIS inversion algorithms. Our framework stems from the observation of four features common to well-defined EIS inversion algorithms, namely (1) the representation of unknown distributions, (2) the minimization of a metric of error to estimate parameters arising from the chosen representation, subject to constraints on (3) the complexity control parameters, and (4) a means for choosing optimal control parameter values. These features must be present to overcome the ill-posed nature of EIS inversion problems. We review three established EIS inversion algorithms to illustrate the pervasiveness of these features, and show the utility of the framework by resolving ambiguities concerning three more algorithms. Our framework is then used to design the generalized EIS inversion (gEISi) algorithm, which uses Gaussian basis function representation, modality control parameter, and cross-validation for choosing the optimal control parameter value. The gEISi algorithm is applicable to the generalized EIS inversion problem, which allows for a wider range of underlying models. We also considered the construction of credible intervals for distributions arising from the algorithm. The algorithm is able to accurately reproduce distributions which have been difficult to obtain using existing algorithms. It is provided gratis on the repository this https URL.

[1]  Vijay Balasubramanian,et al.  Statistical Inference, Occam's Razor, and Statistical Mechanics on the Space of Probability Distributions , 1996, Neural Computation.

[2]  Bernard A. Boukamp,et al.  Fourier transform distribution function of relaxation times; application and limitations , 2015 .

[3]  Yukio Ogata,et al.  Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. , 2006, The journal of physical chemistry. B.

[4]  K. Jüttner Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces , 1990 .

[5]  S. Pereverzyev,et al.  Adaptive multi-parameter regularization approach to construct the distribution function of relaxation times , 2019, GEM - International Journal on Geomathematics.

[6]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[7]  Alexandra Weiß,et al.  Identification of Polarization Losses in High-Temperature PEM Fuel Cells by Distribution of Relaxation Times Analysis , 2016 .

[8]  Martin Z. Bazant,et al.  Multicomponent Gas Diffusion in Porous Electrodes , 2014 .

[9]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[10]  F. Lisdat,et al.  The use of electrochemical impedance spectroscopy for biosensing , 2008, Analytical and bioanalytical chemistry.

[11]  A. Lasia Electrochemical Impedance Spectroscopy and its Applications , 2014 .

[12]  Mufu Yan,et al.  A high-precision approach to reconstruct distribution of relaxation times from electrochemical impedance spectroscopy , 2016 .

[13]  Francesco Ciucci,et al.  Analysis of Electrochemical Impedance Spectroscopy Data Using the Distribution of Relaxation Times: A Bayesian and Hierarchical Bayesian Approach , 2015 .

[14]  M. Z. Bazant,et al.  Effects of Nanoparticle Geometry and Size Distribution on Diffusion Impedance of Battery Electrodes , 2012, 1205.6539.

[15]  Andrzej Lasia,et al.  The use of regularization methods in the deconvolution of underlying distributions in electrochemical processes , 1999 .

[16]  Lorenzo Fedrizzi,et al.  Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion , 1996 .

[17]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[18]  Yoed Tsur,et al.  Harnessing evolutionary programming for impedance spectroscopy analysis: A case study of mixed ionic-electronic conductors , 2011 .

[19]  D. Sauer,et al.  Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling , 2011 .

[20]  ProblemsPer Christian HansenDepartment The L-curve and its use in the numerical treatment of inverse problems , 2000 .

[21]  D. Sauer,et al.  Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation , 2011 .

[22]  A. Lakhtakia,et al.  Inverse black body radiation at submillimeter wavelengths , 1984 .

[23]  J. Ross Macdonald,et al.  Comparison of methods for estimating continuous distributions of relaxation times , 2005 .

[24]  Per Christian Hansen,et al.  REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.

[25]  Bernard A. Boukamp,et al.  Electrochemical impedance spectroscopy in solid state ionics: recent advances , 2004 .

[26]  Distribution of relaxation times investigation of $$\hbox {Co}^{3+}$$Co3+ doping lithium-rich cathode material $$\hbox {Li}[\hbox {Li}_{0.2} \hbox {Ni}_{0.1} \hbox {Mn}_{0.5} \hbox {Co}_{0.2}]\hbox {O}_{2}$$Li[Li0.2Ni0.1Mn0.5Co0.2]O2 , 2018, Bulletin of Materials Science.

[27]  Zhian Zhang,et al.  Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading , 2013 .

[28]  M. Bazant,et al.  A method to extract potentials from the temperature dependence of Langmuir constants for clathrate-hydrates , 2000, physics/0011047.

[29]  Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells , 2014, 1412.1548.

[30]  M. Bazant,et al.  Electrochemical impedance of electrodiffusion in charged medium under dc bias. , 2019, Physical review. E.

[31]  Yoed Tsur,et al.  ISGP: Impedance Spectroscopy Analysis Using Evolutionary Programming Procedure , 2011 .

[32]  M. Bazant,et al.  Electrochemical Impedance Imaging via the Distribution of Diffusion Times. , 2017, Physical review letters.

[33]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[34]  Ting Hei Wan,et al.  Optimal Regularization in Distribution of Relaxation Times applied to Electrochemical Impedance Spectroscopy: Ridge and Lasso Regression Methods - A Theoretical and Experimental Study , 2014 .

[35]  J. Macdonald Exact and approximate nonlinear least‐squares inversion of dielectric relaxation spectra , 1995 .

[36]  Ellen Ivers-Tiffée,et al.  The distribution of relaxation times as basis for generalized time-domain models for Li-ion batteries , 2013 .

[37]  Electrochemical Impedance of a Battery Electrode with Anisotropic Active Particles , 2013, 1309.5864.

[38]  Hughes,et al.  Chen's inversion formula. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[39]  G. Weiss On the Inversion of the Specific-Heat Function , 1959 .

[40]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[41]  S. S. A. El-rehim,et al.  The inhibition of low carbon steel corrosion in hydrochloric acid solutions by succinic acid: Part I. Weight loss, polarization, EIS, PZC, EDX and SEM studies , 2007 .

[42]  J. Schmidt,et al.  The Distribution of Relaxation Times as Beneficial Tool for Equivalent Circuit Modeling of Fuel Cells and Batteries , 2012 .

[43]  H. Schichlein,et al.  Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells , 2002 .

[44]  R. M. Degerstedt,et al.  Mathematical Models for Cathodic Protection of an Underground Pipeline with Coating Holidays: Part 1 — Theoretical Development , 1995 .

[45]  Temple F. Smith Occam's razor , 1980, Nature.

[46]  Florian Mansfeld,et al.  Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings , 1995 .

[47]  Qing Wang,et al.  Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. , 2005, The journal of physical chemistry. B.

[48]  Tom Hörlin,et al.  Deconvolution and maximum entropy in impedance spectroscopy of noninductive systems , 1998 .

[49]  Martin Z. Bazant,et al.  Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores , 2014, Scientific Reports.

[50]  Zhen He,et al.  Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies , 2009 .

[51]  Ying Chen,et al.  Theoretical investigation on inversion for the phonon density of states , 1990 .

[52]  Nicolas Florsch,et al.  Inversion of generalized relaxation time distributions with optimized damping parameter , 2014 .

[53]  Bobby Pejcic,et al.  Impedance spectroscopy: Over 35 years of electrochemical sensor optimization , 2006 .

[54]  Yanbin Li,et al.  Immunobiosensor chips for detection of Escherichia coil O157:H7 using electrochemical impedance spectroscopy. , 2002, Analytical chemistry.

[55]  Florian Mansfeld,et al.  Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection , 1990 .

[56]  Pedro M. Domingos The Role of Occam's Razor in Knowledge Discovery , 1999, Data Mining and Knowledge Discovery.

[57]  Ting Hei Wan,et al.  Influence of the Discretization Methods on the Distribution of Relaxation Times Deconvolution: Implementing Radial Basis Functions with DRTtools , 2015 .

[58]  E. Tuncer,et al.  On dielectric data analysis. Using the Monte Carlo method to obtain relaxation time distribution and comparing non-linear spectral function fits , 2001 .