Synthetic Strategies for Controlling the Morphology of Proton Conducting Polymer Membranes

The nanostructure and morphology of proton conducting polymers is of considerable interest in the search for next generation materials and optimization of existing ones. Synthetic methodologies for tailoring molecular structures that promote nanoscopic phase separation of ionic and non-ionic domains, and the effect of phase separation on parameters such as proton conductivity, are considered. Rather than distinguish proton conducting polymers according to chemical class, they are categorized under sub-headings of random, block, and graft copolymers. The synthetic methodology available to access archetypal polymer structures is dependent on the nature of the monomers and restrictive compared to conventional non-ionic polymer systems. Irrespective of the methodology, ionic aggregation and phase separation are consistently found to play an important role in the proton conductivity of low ion exchange capacity (IEC) membranes, but less of a role in high IEC membranes. Significant research is required to further develop relationships between polymer architecture, morphology, and electrolytic properties.

[1]  E. Espuche,et al.  Water vapour transport mechanism in naphthalenic sulfonated polyimides , 2003 .

[2]  H. Kim,et al.  Structural characterization and surface modification of sulfonated polystyrene–(ethylene–butylene)–styrene triblock proton exchange membranes , 2003 .

[3]  G. Wnek,et al.  Complex Impedance Studies of S-SEBS Block Polymer Proton-Conducting Membranes , 2001 .

[4]  Michael A. Hickner,et al.  Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes , 2002 .

[5]  A. S. Hay,et al.  Synthesis and properties of poly(arylene ether)s bearing sulfonic acid groups on pendant phenyl rings , 2001 .

[6]  Tatsuhiro Okada,et al.  Characteristics of water transport in relation to microscopic structure in Nafion membranes , 1996 .

[7]  B. Gupta,et al.  Cation exchange membranes by pre-irradiation grafting of styrene into FEP films. II. Properties of copolymer membranes , 1996 .

[8]  A. Noshay 5 – A-B Diblock Copolymers , 1977 .

[9]  O. Webster Living Polymerization Methods , 1991, Science.

[10]  K. V. Lovell,et al.  Synthesis and characterisation of sulfonic acid-containing ion exchange membranes based on hydrocarbon and fluorocarbon polymers , 2002 .

[11]  Dawn M. Crawford,et al.  Triblock copolymer ionomer membranes: Part I. Methanol and proton transport , 2003 .

[12]  Jinhwan Kim,et al.  Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene copolymers , 2002 .

[13]  F. E. Karasz,et al.  Solubility and properties of a poly(aryl ether ketone) in strong acids , 1985 .

[14]  S. Tjong,et al.  Synthesis and proton conductivities of phosphonic acid containing poly‐(arylene ether)s , 2001 .

[15]  Stephen J. Paddison,et al.  Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes , 2003 .

[16]  S. Tjong,et al.  Proton-exchange membrane electrolytes derived from phosphonic acid containing poly(arylene ether)s , 2003 .

[17]  Deborah J. Jones,et al.  Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications , 2001 .

[18]  Jianfu Ding,et al.  Ionic conductivity of proton exchange membranes , 2001 .

[19]  Robert V. Morford,et al.  Phenylphosphonic acid functionalized poly[aryloxyphosphazenes] , 2002 .

[20]  S. Milner Chain Architecture and Asymmetry in Copolymer Microphases , 1994 .

[21]  Ian W. Hamley,et al.  The physics of block copolymers , 1998 .

[22]  R. Spontak,et al.  Perfectly‐alternating linear (AB)n multiblock copolymers: Effect of molecular design on morphology and properties , 2001 .

[23]  N. Cornet,et al.  Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes , 2001 .

[24]  S. Holdcroft,et al.  Electrochemical Characterization of Ethylenetetrafluoroethylene‐g‐polystyrenesulfonic Acid Solid Polymer Electrolytes , 2000 .

[25]  K. V. Lovell,et al.  Comparison of fuel cell performance of selected fluoropolymer and hydrocarbon based grafted copolymers incorporating acrylic acid and styrene sulfonic acid , 2002 .

[26]  Bernd Bauer,et al.  Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C) , 2001 .

[27]  H. Ha,et al.  Effect of Casting Solvent on Morphology and Physical Properties of Partially Sulfonated Polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene Copolymers , 2002 .

[28]  S. Holdcroft,et al.  Enhanced Conductivity in Morphologically Controlled Proton Exchange Membranes: Synthesis of Macromonomers by SFRP and Their Incorporation into Graft Polymers , 2002 .

[29]  P. Madec,et al.  Synthesis and characterization of poly(butadiene-b-sulphone) by block-copolycondensation—I. Synthesis from α,ω-dichlorocarbonyl oligobutadienes and α,ω-diphenol oligoarylethersulphones , 1984 .

[30]  J. Hedrick,et al.  Surface and bulk phase separation in block copolymers and their blends. Polysulfone/polysiloxane , 1988 .

[31]  R. Weiss,et al.  Block copolymer ionomers: 1. Synthesis and physical properties of sulphonated poly(styrene-ethylene/butylene-styrene) , 1991 .

[32]  Qunhui Guo,et al.  Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes , 1999 .

[33]  N. Hadjichristidis,et al.  MORPHOLOGY OF MIKTOARM STAR BLOCK COPOLYMERS OF STYRENE AND ISOPRENE , 1996 .

[34]  T. Ogawa,et al.  Polyaromatic Ether-Ketones and Ether-Keto-Sulfones Having Various Hydrophilic Groups, , 1985 .

[35]  S. Holdcroft,et al.  A self-organized network of nanochannels enhances ion conductivity through polymer films , 2001 .

[36]  V. Hamciuc,et al.  Synthesis of polysulfone block copolymers containing polydimethylsiloxane , 1996 .

[37]  P. Jannasch Recent developments in high-temperature proton conducting polymer electrolyte membranes , 2003 .

[38]  S. Holdcroft,et al.  Synthesis of Block Copolymers Possessing Fluoropolymer and Non-Fluoropolymer Segments by Radical Polymerization , 2004 .

[39]  W. Meyer,et al.  ANHYDROUS PROTON-CONDUCTING POLYMERS , 2003 .

[40]  S. Holdcroft,et al.  Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes , 2004 .

[41]  J. Kressler,et al.  SAXS and TEM studies on poly(styrene)-block-poly(ethene-co-but-1-ene)-block-poly(styrene) in bulk and at various interfaces , 1997 .

[42]  A. Mokrini,et al.  New ion conducting systems based on star branched block copolymer , 2001 .

[43]  N. Terrill,et al.  Morphologies of microphase-separated A2B simple graft copolymers , 1996 .

[44]  K. Matyjaszewski,et al.  Atom transfer radical polymerization. , 2001, Chemical reviews.

[45]  R. Duplessix,et al.  Small‐angle scattering studies of nafion membranes , 1981 .

[46]  N. Hadjichristidis,et al.  Morphology and miscibility of miktoarm styrene-diene copolymers and terpolymers , 1993 .

[47]  H. Kawai,et al.  Small-angle x-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima , 1981 .

[48]  Jesse S. Wainright,et al.  Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells , 2004 .

[49]  Young Taik Hong,et al.  Sulfonated naphthalene dianhydride based polyimide copolymers for proton‐exchange‐membrane fuel cells. I. Monomer and copolymer synthesis , 2004 .

[50]  H. Kita,et al.  Novel sulfonated polyimides as polyelectrolytes for fuel cell application. 2. Synthesis and proton conductivity of polyimides from 9,9-bis(4-aminophenyl)fluorene-2,7-disulfonic acid , 2002 .

[51]  E. Tsuchida,et al.  Synthesis and Proton Conductivity of Highly Sulfonated Poly(thiophenylene) , 1997 .

[52]  C. Heitner-Wirguin Recent advances in perfluorinated ionomer membranes : structure, properties and applications , 1996 .

[53]  A. S. Hay,et al.  New poly(arylene ether)s with pendant phosphonic acid groups , 2001 .

[54]  J. L. Acosta,et al.  Polymer proton-conduction systems based on commercial polymers. I. Synthesis and characterization of hydrogenated styrene–butadiene block copolymer and isobutylene isoprene rubber systems , 2003 .

[55]  F. C. Wilson,et al.  The morphology in nafion† perfluorinated membrane products, as determined by wide- and small-angle x-ray studies , 1981 .

[56]  Xiangyang Zhou,et al.  Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells , 2002 .

[57]  M. Hickner,et al.  Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization , 2001 .

[58]  H. Kita,et al.  Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2′,4′-diaminophenoxy)propane sulfonic acid , 2003 .

[59]  N. Bunce,et al.  STRUCTURE AND CHEMISTRY OF NAFION-H: A FLUORINATED SULFONIC ACID POLYMER , 1986 .

[60]  T. Kallio,et al.  Effect of the Initial Matrix Material on the Structure of Radiation-Grafted Ion-Exchange Membranes: Wide-angle and Small-Angle X-Ray Scattering Studies , 2002 .

[61]  V. Antonucci,et al.  Sulfonated polysulfone ionomer membranes for fuel cells , 2001 .

[62]  T. Hashimoto,et al.  Influence of casting solvents on microphase-separated structures of poly(2-vinylpyridine)-block-polyisoprene , 1999 .

[63]  M. Nasef,et al.  Part II. Properties of the grafted and sulfonated membranes , 2000 .

[64]  A. Mel'man,et al.  A Direct Methanol Fuel Cell Based on a Novel Low‐Cost Nanoporous Proton‐Conducting Membrane , 1999 .

[65]  T. Kallio,et al.  Electrochemical characterization of radiation-grafted ion-exchange membranes based on different matrix polymers , 2002 .

[66]  Günther G. Scherer,et al.  Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells , 1995 .

[67]  F. Bates,et al.  Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition , 1995 .

[68]  A. Mokrini,et al.  Comparative study of polymer single cells based on sulfonated linear and star butadiene–styrene block copolymer electrolyte membranes , 2002 .

[69]  E. Thomas,et al.  New Structural Motif in Hexagonally Ordered Cylindrical Ternary (ABC) Block Copolymer Microdomains , 1998 .

[70]  R. Noble,et al.  Morphological changes and facilitated transport characteristics for nafion membranes of various equivalent weights , 1996 .

[71]  N. B. Tan,et al.  H‐shaped double graft copolymers: Effect of molecular architecture on morphology , 1997 .

[72]  E. Passalacqua,et al.  Sulfonated polysulfone as promising membranes for polymer electrolyte fuel cells , 2000 .

[73]  Polyphosphazene membranes. IV. Polymer morphology and proton conductivity in sulfonated poly[bis(3‐methylphenoxy)phosphazene] films , 2001 .

[74]  J. Hedrick,et al.  Synthesis of xylenyl ether-arylene ether sulfone triblock copolymers as potential modifiers for polystyrene and related structures , 1989 .

[75]  H. Kawai,et al.  Small-angle x-ray scattering study of perfluorinated ionomer membranes. 2. Models for ionic scattering maximum , 1982 .

[76]  James E. McGrath,et al.  Block Copolymers: Overview and Critical Survey , 1977 .

[77]  B. Boutevin,et al.  Atom Transfer Radical Polymerization Initiated with Vinylidene Fluoride Telomers , 2000 .

[78]  K. Matyjaszewski,et al.  Controlled Living Radical Polymerization - Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(II) Redox Process , 1995 .

[79]  T. Kotaka,et al.  Elongational flow-induced morphology change of block copolymers. 2. A polystyrene-block-poly(ethylene butylene)-block-polystyrene triblock copolymer with cylindrical microdomains , 2001 .

[80]  B. Gupta,et al.  Performance of Differently Cross‐Linked, Partially Fluorinated Proton Exchange Membranes in Polymer Electrolyte Fuel Cells , 1995 .

[81]  Young Taik Hong,et al.  Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton‐exchange membranes for fuel‐cell use above 100 °C , 2003 .

[82]  Krzysztof Matyjaszewski,et al.  Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes , 1995 .

[83]  G. Alberti,et al.  Composite Membranes for Medium-Temperature PEM Fuel Cells , 2003 .

[84]  K. Oyaizu,et al.  Synthesis and properties of novel sulfonated arylene ether/fluorinated alkane copolymers , 2001 .

[85]  M. Junginger,et al.  Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes , 1998 .

[86]  Zhiqing Shi,et al.  Synthesis of fluorine-containing block copolymers via ATRP. 1. Synthesis and characterization of PSt-PVDF-PSt triblock copolymers , 1999 .

[87]  P. Jannasch,et al.  Sulfophenylation of polysulfones for proton-conducting fuel cell membranes , 2002 .

[88]  Qingfeng Li,et al.  Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C , 2003 .

[89]  J. Kerres Development of ionomer membranes for fuel cells , 2001 .

[90]  S. Holdcroft,et al.  Solid Polymer Electrolytes Based on Ionic Graft Polymers: Effect of Graft Chain Length on Nano‐Structured, Ionic Networks , 2002 .

[91]  R. Savinell,et al.  Evaluation of a Sol-Gel Derived Nafion/Silica Hybrid Membrane for Polymer Electrolyte Membrane Fuel Cell Applications: II. Methanol Uptake and Methanol Permeability , 2001 .

[92]  N. Cornet,et al.  Influence of the structure of sulfonated polyimide membranes on transport properties , 2001 .

[93]  Matthew Libera,et al.  Morphological Development in Solvent-Cast Polystyrene−Polybutadiene−Polystyrene (SBS) Triblock Copolymer Thin Films , 1998 .

[94]  Gordon L. Nelson,et al.  Development of new proton exchange membrane electrolytes for water electrolysis at higher temperatures , 1998 .

[95]  B. Pivovar,et al.  Processing induced morphological development in hydrated sulfonated poly(arylene ether sulfone) copolymer membranes , 2003 .

[96]  W. Neubrand,et al.  Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU crosslinked PSU blend membranes by disproportionation of sulfinic acid groups , 1998 .

[97]  G. Gebel,et al.  Sulfonated Polyimide Ionomers: A Structural Study , 2004 .

[98]  A. Mokrini,et al.  Studies of sulfonated block copolymer and its blends , 2001 .

[99]  S. Holdcroft,et al.  Synthesis of poly[arylene ether sulfone-b-vinylidene fluoride] block copolymers , 2004 .

[100]  Young Jin Kim,et al.  Fixation of nanosized proton transport channels in membranes , 2003 .

[101]  Göran Sundholm,et al.  Phase separation and crystallinity in proton conducting membranes of styrene grafted and sulfonated poly(vinylidene fluoride) , 1999 .

[102]  Deborah J. Jones,et al.  Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells , 2003 .

[103]  M. Torkkeli,et al.  The state of water and the nature of ion clusters in crosslinked proton conducting membranes of styrene grafted and sulfonated poly(vinylidene fluoride) , 2000 .

[104]  J. Hedrick,et al.  Preparation and properties of phenylene oxide–aryl ether sulphone block copolymers and their blends , 1996 .

[105]  H. Henning Winter,et al.  The effect of unidirectional shear on the structure of triblock copolymers. I. Polystyrene-polybutadiene-polystyrene , 1989 .

[106]  H. Yeager,et al.  Perfluorinated Ionomer Membranes , 1982 .

[107]  S. Holdcroft,et al.  Conductivity and Electrochemical ORR Mass Transport Properties of Solid Polymer Electrolytes Containing Poly(styrene sulfonic acid) Graft Chains , 2003 .

[108]  K. Kreuer On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells , 2001 .

[109]  G. Michler,et al.  Correlation between Molecular Architecture, Morphology, and Deformation Behaviour of Styrene/Butadiene Block Copolymers , 2003 .

[110]  T. Kallio,et al.  Radiation‐grafted ion‐exchange membranes: Influence of the initial matrix on the synthesis and structure , 2001 .

[111]  K. Sanui,et al.  Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers , 2000 .

[112]  J. Mcgrath,et al.  Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers. I , 2003 .