Hydrogen-induced cracking mechanism of precipitation strengthened austenitic stainless steel weldment

[1]  L. Rong,et al.  Microstructure and Mechanical Properties of Electron Beam Welded Alloy J75 , 2014 .

[2]  M. Nagumo,et al.  Hydrogen embrittlement of austenitic stainless steels revealed by deformation microstructures and strain-induced creation of vacancies , 2014 .

[3]  L. Rong,et al.  Effect of grain size on the hydrogen embrittlement sensitivity of a precipitation strengthened Fe–Ni based alloy , 2014 .

[4]  Jinyang Zheng,et al.  Influence of low temperature prestrain on hydrogen gas embrittlement of metastable austenitic stainless steels , 2013 .

[5]  L. Rong,et al.  Effect of Ti content on the microstructure and mechanical properties of electron beam welds in Fe-Ni based alloys , 2013 .

[6]  C. Younes,et al.  Influence of hydrogen content on the tensile properties and fracture of austenitic stainless steel welds , 2013 .

[7]  S. Weber,et al.  Hydrogen environment embrittlement of stable austenitic steels , 2012 .

[8]  V. Olden,et al.  Hydrogen diffusion and hydrogen influenced critical stress intensity in an API X70 pipeline steel welded joint – Experiments and FE simulations , 2012 .

[9]  J. Puskar,et al.  Hydrogen-assisted crack propagation in 304L/308L and 21Cr–6Ni–9Mn/308L austenitic stainless steel fusion welds , 2012 .

[10]  W. Theisen,et al.  Effect of alloying elements on hydrogen environment embrittlement of AISI type 304 austenitic stainless steel , 2011 .

[11]  V. Papazoglou,et al.  Hydrogen effect on fracture toughness of pipeline steel welds, with in situ hydrogen charging , 2011 .

[12]  A. Volinsky,et al.  In situ transmission electron microscopy study of alpha-brass nanoligament formation, microstructure evolution and fracture , 2011 .

[13]  L. Rong,et al.  Effect of boron addition on hydrogen embrittlement sensitivity in Fe–Ni based alloys , 2010 .

[14]  L. Rong,et al.  Effect of boron on the microstructure, mechanical properties and hydrogen performance in a modified A286 , 2010 .

[15]  Stephan Brauser,et al.  Hydrogen absorption of different welded duplex steels , 2010 .

[16]  Thorsten Michler,et al.  Hydrogen environment embrittlement of orbital welded austenitic stainless steels at −50 °C , 2009 .

[17]  Richard P. Gangloff,et al.  Influence of macro segregation on hydrogen environment embrittlement of SUS 316L stainless steel , 2009 .

[18]  T. Michler Toughness and hydrogen compatibility of austenitic stainless steel welds at cryogenic temperatures , 2007 .

[19]  M. Rogante,et al.  Hydrogen interaction and stress-corrosion in hydrocarbon storage vessel and pipeline weldings , 2006 .

[20]  L. Qiao,et al.  Hydrogen embrittlement of weld metal of austenitic stainless steels , 2002 .

[21]  A. Szummer,et al.  Comparison of hydrogen embrittlement of stainless steels and nickel-base alloys , 2002 .

[22]  V. Shvachko Cold cracking of structural steel weldments as reversible hydrogen embrittlement effect , 2000 .

[23]  D. F. Li,et al.  Effect of P (Mn) content on the coarsening of γ′ in Incoloy 903 , 1995 .

[24]  J. Brooks,et al.  ]Microstructure and hydrogen effects on fracture in the alloy A-286 , 1993, Metallurgical and Materials Transactions A.

[25]  Yiyi Li,et al.  Hydrogen permeation and diffusion in iron-base superalloys , 1993 .

[26]  N. Richards,et al.  Fusion zone microstructure of electron beam welded incoloy 903 , 1992 .

[27]  Y. Xie,et al.  Microstructure and hydrogen embrittlement in incology 907 , 1991 .

[28]  P. Hicks,et al.  Internal hydrogen effects on tensile properties of iron- and nickel-base superalloys , 1990 .

[29]  G. M. Bond,et al.  Effects of hydrogen on deformation and fracture processes in high-ourity aluminium , 1988 .

[30]  J. Brooks,et al.  The mechanism of precipitation strengthening in an iron-base superalloy , 1982 .

[31]  A. Thompson Hydrogen-induced ductility loss in commercial precipitation-strengthened stainless steels , 1976 .

[32]  J. Brooks,et al.  Hydrogen performance of precipitation-strengthened stainless steels based on A-286 , 1975 .

[33]  A. Thompson The behavior of sensitized 309S stainless steel in hydrogen , 1974 .

[34]  G. Smith,et al.  The effects of hydrogen on the deformation and fracture of nickel-iron alloys , 1971 .

[35]  Rogers Hc Hydrogen Embrittlement of Metals: Atomic hydrogen from a variety of sources reduces the ductility of many metals. , 1968 .

[36]  H. Gleiter Theorie der prismatischen Quergleitung von versetzungen in der umgebung von Ausscheidungen , 1967 .

[37]  Brian P. Somerday,et al.  Effects of hydrogen on materials : proceedings of the 2008 International Hydrogen Conference, September 7-10, 2008, Jackson Lake Lodge, Grand Teton National Park, Wyoming, USA , 2009 .

[38]  C. S. Marchi,et al.  Effects of alloy composition and strain hardening on tensile fracture of hydrogen-precharged type 316 stainless steels , 2008 .

[39]  K. Ducki Analysis of the precipitation and growth processes in a high-temperature Fe-Ni alloy , 2008 .

[40]  C. S. Marchi,et al.  Permeability, solubility and diffusivity of hydrogen isotopes in stainless steels at high gas pressures , 2007 .

[41]  K. Ducki Structure and precipitation strengthening in a high-temperature Fe–Ni alloy , 2007 .

[42]  Z. K. Li,et al.  Effect of Hydrogen on Mechanical Properties of EB-Welded Joints of JBK-75 Steel from Ambient to Cryogenic Temperatures , 1994 .

[43]  P. Hicks,et al.  Hydrogen-enhanced cracking of superalloys , 1992 .

[44]  V. Gouda,et al.  PERFORMANCE OF NODULAR CAST IRON AS VALVE MATERIAL IN ARABIAN GULF SEAWATER , 1989 .

[45]  R. Gibala,et al.  Hydrogen embrittlement and stress corrosion cracking , 1985 .

[46]  J. A. Donovan,et al.  Hydrogen embrittlement of metals , 1972 .

[47]  A. Kelly,et al.  Strengthening methods in crystals , 1971 .