Membrane Systems with Peripheral Proteins: Transport and Evolution

Transport of substances and communication between compartments are fundamental biological processes, often mediated by the presence of complementary proteins attached to the surfaces of membranes. Within compartments, substances are acted upon by local biochemical rules. Inspired by this behaviour we present a model based on membrane systems, with objects attached to the sides of the membranes and floating objects that can move between the regions of the system. Moreover, in each region there are evolution rules that rewrite the transported objects, mimicking chemical reactions. We first analyse the system, showing that interesting qualitative properties can be decided (like reachability of configurations) and then present a simulator based on a stochastic version of the introduced model and show how it can be used to simulate relevant quantitative biological processes.

[1]  Andrei Paun,et al.  P Systems with Proteins on Membranes and Membrane Division , 2006, Developments in Language Theory.

[2]  Gabriel Ciobanu,et al.  Applications of Membrane Computing , 2006, Applications of Membrane Computing.

[3]  Gheorghe Paun,et al.  Applications of Membrane Computing (Natural Computing Series) , 2005 .

[4]  B. Alberts,et al.  An Introduction to the Molecular Biology of the Cell , 1998 .

[5]  Sean Sedwards,et al.  Decision problems in membrane systems with peripheral proteins, transport and evolution , 2008, Theor. Comput. Sci..

[6]  Kenneth Lundstrom,et al.  The future of G protein-coupled receptors as targets in drug discovery. , 2005, IDrugs : the investigational drugs journal.

[7]  Gheorghe Paun,et al.  Regulated Rewriting in Formal Language Theory , 1989 .

[8]  Shankara Narayanan Krishna Universality results for P systems based on brane calculi operations , 2007, Theor. Comput. Sci..

[9]  Arto Salomaa,et al.  Formal languages , 1973, Computer science classics.

[10]  Bruce Alberts,et al.  Essential Cell Biology , 1983 .

[11]  H. Kitano,et al.  A quantitative characterization of the yeast heterotrimeric G protein cycle , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  L. Cardelli,et al.  Interactions of Biological Membranes , 2005 .

[13]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[14]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[15]  Roberto Gorrieri,et al.  On the Computational Power of Brane Calculi , 2006, Trans. Comp. Sys. Biology.

[16]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[17]  Matthias Jantzen,et al.  Petri net algorithms in the theory of matrix grammars , 2005, Acta Informatica.

[18]  M. W. Shields An Introduction to Automata Theory , 1988 .

[19]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[20]  Matteo Cavaliere Evolution-Communication P Systems , 2002, WMC-CdeA.

[21]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[22]  Gheorghe Paun,et al.  A guide to membrane computing , 2002, Theor. Comput. Sci..

[23]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[24]  Luca Cardelli,et al.  An universality result for a (mem)brane calculus based on mate/drip operations , 2006, Int. J. Found. Comput. Sci..

[25]  Matteo Cavaliere,et al.  Time-Independent P Systems , 2004, Workshop on Membrane Computing.

[26]  Grzegorz Rozenberg,et al.  Membrane Systems with Marked Membranes , 2007, Electron. Notes Theor. Comput. Sci..

[27]  Vincent Danos,et al.  Projective Brane Calculus , 2004, CMSB.

[28]  Florent Jacquemard,et al.  An Analysis of a Public Key Protocol with Membranes , 2005 .

[29]  Sean Sedwards,et al.  Modelling Cellular Processes Using Membrane Systems with Peripheral and Integral Proteins , 2006, CMSB.

[30]  H. Lodish Molecular Cell Biology , 1986 .

[31]  Luca Cardelli,et al.  Brane Calculi Interactions of Biological Membranes , 2004 .