A spectroscopy oriented configuration interaction procedure

A multireference configuration interaction (MR-CI) based method (Spectroscopy ORiented CI, SORCI) is proposed to calculate energy differences between several electronic states of possibly different multiplicity and which can be extended to fairly large molecules. It combines several well-known concepts in order to achieve efficiency, balance, generality, stability and accuracy: (a) the use of any kind of (preferably small) reference space and any kind of initial self-consistent field treatment, (b) the use of average approximate natural orbitals (AANOs) for the states of interest, (c) a variational treatment of the strongly interacting many electron states combined with second order multireference Moller–Plesset perturbation theory for the much larger weakly interacting remainder, (d) the concept of difference-dedicated CI developed and extensively used by Malrieu and co-workers that avoids contributions which are expected to cancel in energy differences, (e) the use of the resolution-of-the identity appr...

[1]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[2]  B. H. Loo,et al.  Enhanced Raman spectroscopic study of the adsorption of thiocarbohydrazide on silver and copper electrode surfaces , 1990 .

[3]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[4]  Rodney J. Bartlett,et al.  Multi-reference averaged quadratic coupled-cluster method: a size-extensive modification of multi-reference CI , 1993 .

[5]  A. Zaitsevskii,et al.  Multiconfigurational second-order perturbative methods: Overview and comparison of basic properties , 1995 .

[6]  Reinhold F. Fink,et al.  A multi-configuration reference CEPA method based on pair natural orbitals , 1993 .

[7]  K. Hirao,et al.  A CASCI-MRMP method based on Kohn—Sham orbitals , 2002 .

[8]  John F. Stanton,et al.  The equation of motion coupled‐cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties , 1993 .

[9]  S. Rettrup,et al.  Average virtual orbitals in configuration interaction studies with application to the low‐lying singlet states of the carbon monoxide and acetone molecules , 1992 .

[10]  Kerstin Andersson,et al.  Different forms of the zeroth-order Hamiltonian in second-order perturbation theory with a complete active space self-consistent field reference function , 1995 .

[11]  J. Malrieu,et al.  An iterative difference-dedicated configuration interaction. Proposal and test studies , 1995 .

[12]  Kamcl Advances in chemical physics, vol. XXXV , 1977 .

[13]  Kimihiko Hirao,et al.  Second-order quasi-degenerate perturbation theory with quasi-complete active space self-consistent field reference functions , 2001 .

[14]  K. Hamacher,et al.  Massively parallel individually selecting configuration interaction , 2000 .

[15]  M. Zerner A configuration-averaged Hartree-Fock procedure , 1989 .

[16]  J. Malrieu,et al.  On the quasidiabatic character of average natural orbitals , 1997 .

[17]  Jeppe Olsen,et al.  Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces , 1988 .

[18]  Daniel Maynau,et al.  Reducing CAS‐SDCI space. Using selected spaces in configuration interaction calculations in an efficient way , 2002, J. Comput. Chem..

[19]  Robert J. Gdanitz,et al.  A formulation of multiple-reference CI with terms linear in the interelectronic distances , 1993 .

[20]  R. Bartlett,et al.  Coupled‐cluster calculations of the excitation energies of ethylene, butadiene, and cyclopentadiene , 1996 .

[21]  Stefano Evangelisti,et al.  Convergence of an improved CIPSI algorithm , 1983 .

[22]  C. Bo,et al.  Relative stability of the 3A2, 1A2, and 1A1 states of phenylnitrene: A difference‐dedicated configuration interaction calculation , 1996 .

[23]  H. Lischka,et al.  THE ETHYLENE 1 1B1U V STATE REVISITED , 1999 .

[24]  Renzo Cimiraglia,et al.  Many‐body multireference Møller—Plesset and Epstein—Nesbet perturbation theory: Fast evaluation of second‐order energy contributions , 1996 .

[25]  J. P. Malrieu,et al.  Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth‐order wavefunctions , 1973 .

[26]  Michael Hanrath,et al.  New algorithms for an individually selecting MR-CI program , 1997 .

[27]  Kimihiko Hirao,et al.  Recent Advances in Multireference Methods , 1999 .

[28]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .

[29]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[30]  Robert J. Buenker,et al.  Energy extrapolation in CI calculations , 1975 .

[31]  V. Barone,et al.  Magnetic coupling in biradicals, binuclear complexes and wide-gap insulators: a survey of ab initio wave function and density functional theory approaches , 2000 .

[32]  Per E. M. Siegbahn,et al.  Generalizations of the direct CI method based on the graphical unitary group approach. II. Single and double replacements from any set of reference configurations , 1980 .

[33]  Dage Sundholm,et al.  Interpretation of the electronic absorption spectrum of free-base porphin using time-dependent density-functional theory , 2000 .

[34]  R. Caballol,et al.  Variational calculation of small energy differences. The singlet-triplet gap in [Cu2Cl6]2− , 1992 .

[35]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[36]  S. Grimme,et al.  Multi-reference Møller–Plesset theory: computational strategies for large molecules , 2000 .

[37]  Robert J. Gdanitz,et al.  The averaged coupled-pair functional (ACPF): A size-extensive modification of MR CI(SD) , 1988 .

[38]  Robert J. Buenker,et al.  The ground state of the CN+ ion: a multi-reference Ci study , 1980 .

[39]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[40]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[41]  Rodney J. Bartlett,et al.  Coupled-cluster calculations of the electronic excitation spectrum of free base porphin in a polarized basis , 1998 .

[42]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[43]  J. Malrieu,et al.  Accurate ab initio determination of magnetic interactions and hopping integrals in La2−xSrxCuO4 systems , 2000 .

[44]  T. Cundari Computational Organometallic Chemistry , 2001 .

[45]  B. Roos,et al.  Applications of level shift corrected perturbation theory in electronic spectroscopy , 1996 .

[46]  P. Surján,et al.  Damping of perturbation corrections in quasidegenerate situations , 1996 .

[47]  Theoretical determination of the electronic spectrum of free base porphin , 1994 .

[48]  A. Köhn,et al.  First-order properties for triplet excited states in the approximated coupled cluster model CC2 using an explicitly spin coupled basis , 2002 .

[49]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[50]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[51]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[52]  Robert B. Murphy,et al.  Generalized Møller—Plesset perturbation theory applied to general MCSCF reference wave functions , 1991 .

[53]  P. Löwdin,et al.  New Horizons of Quantum Chemistry , 1983 .

[54]  Hiroshi Nakatsuji,et al.  Cluster expansion of the wavefunction. Calculation of electron correlations in ground and excited states by SAC and SAC CI theories , 1979 .

[55]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[56]  John D. Watts,et al.  Coupled-cluster calculations of the excitation energies of benzene and the azabenzenes , 1997 .