The computational landscape of general physical theories

There is good evidence that quantum computers are more powerful than classical computers, and that various simple modifications of quantum theory yield computational power that is dramatically greater still. However, these modifications also violate fundamental physical principles. This raises the question of whether there exists a physical theory, allowing computation more powerful than quantum, but which still respects those fundamental physical principles. Prior work by two of us introduced this question within a suitable framework for theories that make good operational sense, and showed that in any theory satisfying tomographic locality, the class of problems that can be solved efficiently is contained in the complexity class AWPP. Here, we show that this bound is tight, in the sense that there exists a theory, satisfying tomographic locality, as well as a basic principle of causality, which can efficiently decide everything in AWPP. Hence this theory can efficiently simulate any computation in this framework, including quantum computation.

[1]  Lance Fortnow,et al.  Complexity limitations on quantum computation , 1999, J. Comput. Syst. Sci..

[2]  Stuart A. Kurtz,et al.  On oracle builder's toolkit , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[3]  Markus P. Mueller,et al.  A derivation of quantum theory from physical requirements , 2010, 1004.1483.

[4]  Markus P. Mueller,et al.  Higher-order interference and single-system postulates characterizing quantum theory , 2014, 1403.4147.

[5]  Samson Abramsky,et al.  An Operational Interpretation of Negative Probabilities and No-Signalling Models , 2014, Horizons of the Mind.

[6]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[7]  Ashley Montanaro,et al.  Average-case complexity versus approximate simulation of commuting quantum computations , 2015, Physical review letters.

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  A. Winter,et al.  Information causality as a physical principle , 2009, Nature.

[10]  Ciarán M Lee,et al.  Bounds on the power of proofs and advice in general physical theories , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  G. D’Ariano,et al.  Informational derivation of quantum theory , 2010, 1011.6451.

[13]  Paolo Perinotti,et al.  Determinism without causality , 2013, 1301.7578.

[14]  Jacobo Torán,et al.  Graph isomorphism is low for PP , 1992, computational complexity.

[15]  Joe Henson,et al.  Bounding Quantum Contextuality with Lack of Third-Order Interference. , 2014, Physical review letters.

[16]  Ciaran M. Lee,et al.  Bounds on computation from physical principles , 2017 .

[17]  A. Acín,et al.  Almost quantum correlations , 2014, Nature Communications.

[18]  Ciarán M. Lee,et al.  Device-independent certification of non-classical joint measurements via causal models , 2018, npj Quantum Information.

[19]  H. Barnum,et al.  Generalized no-broadcasting theorem. , 2007, Physical review letters.

[20]  S. Massar,et al.  Hyperdense coding and superadditivity of classical capacities in hypersphere theories , 2015, 1504.05147.

[21]  L. Masanes,et al.  Deriving quantum theory from its local structure and reversibility. , 2011, Physical review letters.

[22]  S. Popescu Nonlocality beyond quantum mechanics , 2014, Nature Physics.

[23]  G. D’Ariano,et al.  Probabilistic theories with purification , 2009, 0908.1583.

[24]  V. Vedral Ju n 20 09 The elusive source of quantum effectiveness , 2009 .

[25]  John H. Selby,et al.  Higher-Order Interference in Extensions of Quantum Theory , 2015, 1510.03860.

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[28]  John H. Selby,et al.  Generalised phase kick-back: the structure of computational algorithms from physical principles , 2015, 1510.04699.

[29]  A. J. Short,et al.  Reversible dynamics in strongly non-local Boxworld systems , 2013, 1312.3931.

[30]  John H. Selby,et al.  Deriving Grover's lower bound from simple physical principles , 2016, 1604.03118.

[31]  G. Niestegge Quantum Teleportation and Grover’s Algorithm Without the Wavefunction , 2016, Foundations of Physics.

[32]  Maarten Van den Nest,et al.  Universal quantum computation with little entanglement. , 2013, Physical review letters.

[33]  Jonathan Barrett Information processing in generalized probabilistic theories , 2005 .

[34]  Aharon Brodutch,et al.  Discord and quantum computational resources , 2012, 1207.5105.

[35]  Stuart A. Kurtz,et al.  Gap-Definable Counting Classes , 1994, J. Comput. Syst. Sci..

[36]  Wim van Dam Implausible consequences of superstrong nonlocality , 2012, Natural Computing.

[37]  Ciarán M Lee,et al.  Towards Device-Independent Information Processing on General Quantum Networks. , 2017, Physical review letters.

[38]  A. J. Short,et al.  Strong nonlocality: a trade-off between states and measurements , 2009, 0909.2601.

[39]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[40]  Dan E. Browne,et al.  Generalized Bell-inequality experiments and computation , 2011 .

[41]  Joel J. Wallman,et al.  Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities. , 2015, Physical review letters.

[42]  T. Fritz,et al.  Local orthogonality as a multipartite principle for quantum correlations , 2012, Nature Communications.

[43]  Niel de Beaudrap On computation with 'probabilities' modulo k , 2014, 1405.7381.

[44]  L. Hardy Reformulating and Reconstructing Quantum Theory , 2011, 1104.2066.

[45]  D. Abrams,et al.  NONLINEAR QUANTUM MECHANICS IMPLIES POLYNOMIAL-TIME SOLUTION FOR NP-COMPLETE AND P PROBLEMS , 1998, quant-ph/9801041.

[46]  Ciarán M Lee,et al.  A no-go theorem for theories that decohere to quantum mechanics , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[47]  J. Acacio de Barros,et al.  Exploring non-signalling polytopes with negative probability , 2014, 1404.3831.

[48]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[49]  S. Aaronson Quantum computing and hidden variables , 2004, quant-ph/0408035.

[50]  Victor Veitch,et al.  Contextuality supplies the ‘magic’ for quantum computation , 2014, Nature.

[51]  J. Emerson,et al.  Three Slit Experiments and the Structure of Quantum Theory , 2009, 0909.4787.

[52]  David Pérez-García,et al.  Existence of an information unit as a postulate of quantum theory , 2012, Proceedings of the National Academy of Sciences.

[53]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[54]  Stephen A. Fenner PP-Lowness and a Simple Definition of AWPP , 2002, Theory of Computing Systems.

[55]  Scott Aaronson,et al.  Quantum computing, postselection, and probabilistic polynomial-time , 2004, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[56]  Scott Aaronson Quantum Computing and Hidden Variables II: The Complexity of Sampling Histories , 2004 .

[57]  Anthony J Short,et al.  Simulating all nonsignaling correlations via classical or quantum theory with negative probabilities. , 2013, Physical review letters.

[58]  D. Gross,et al.  All reversible dynamics in maximally nonlocal theories are trivial. , 2009, Physical review letters.

[59]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[60]  Andrew Chi-Chih Yao,et al.  Quantum Circuit Complexity , 1993, FOCS.

[61]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[62]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[63]  G. Niestegge Conditional Probability, Three-Slit Experiments, and the Jordan Algebra Structure of Quantum Mechanics , 2009, 0912.0203.

[64]  Ciarán M. Lee,et al.  The Information Content of Systems in General Physical Theories , 2016, PC.

[65]  Dan Stahlke,et al.  Quantum interference as a resource for quantum speedup , 2013, 1305.2186.

[66]  Claus-Peter Schnorr The network complexity and the Turing machine complexity of finite functions , 2004, Acta Informatica.

[67]  L. Hardy Quantum Theory From Five Reasonable Axioms , 2001, quant-ph/0101012.

[68]  Ciarán M. Lee,et al.  Computation in generalised probabilisitic theories , 2014, ArXiv.

[69]  John E. Savage,et al.  Computational Work and Time on Finite Machines , 1972, JACM.