Molecular dynamics simulation study on trapping ions in a nanoscale Paul trap

We found by molecular dynamics simulations that a low energy ion can be trapped effectively in a nanoscale Paul trap in both vacuum and aqueous environment when appropriate AC/DC electric fields are applied to the system. Using the negatively charged chlorine ion as an example, we show that the trapped ion oscillates around the center of the nanotrap with the amplitude dependent on the parameters of the system and applied voltages. Successful trapping of the ion within nanoseconds requires electric bias of GHz frequency, in the range of hundreds of mV. The oscillations are damped in the aqueous environment, but polarization of water molecules requires application of higher voltage biases to reach improved stability of the trapping. Application of a supplemental DC driving field along the trap axis can effectively drive the ion off the trap center and out of the trap, opening a possibility of studying DNA and other charged molecules using embedded probes while achieving a full control of their translocation and localization in the trap.

[1]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[2]  M. Cristina Cardoso,et al.  A Versatile Nanotrap for Biochemical and Functional Studies with Fluorescent Fusion Proteins*S , 2008, Molecular & Cellular Proteomics.

[3]  Christina M. Payne,et al.  Single-strand DNA molecule translocation through nanoelectrode gaps , 2007, Nanotechnology.

[4]  D. Ryan,et al.  Toward nanoscale genome sequencing. , 2007, Trends in biotechnology.

[5]  M. Di Ventra,et al.  Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. , 2007, Biophysical journal.

[6]  K. Healy Nanopore-based single-molecule DNA analysis. , 2007, Nanomedicine.

[7]  David A. Sivak,et al.  Controlling DNA capture and propagation through artificial nanopores. , 2007, Nano letters.

[8]  Zesheng Li,et al.  Polymer translocation through a nanopore in mesoscopic simulations , 2007 .

[9]  Y. Tsai,et al.  Driven polymer transport through a nanopore controlled by a rotating electric field: off-lattice computer simulations. , 2007, The Journal of chemical physics.

[10]  M. Burns,et al.  Nanopore sequencing technology: nanopore preparations. , 2007, Trends in biotechnology.

[11]  M. Mizoshiri,et al.  Field emission current and vacuum breakdown by a pointed cathode , 2007 .

[12]  M. Burns,et al.  Nanopore sequencing technology: research trends and applications. , 2006, Trends in biotechnology.

[13]  E. Mardis,et al.  What is the future of electrophoresis in large‐scale genomic sequencing? , 2006, Electrophoresis.

[14]  J. Chiaverini,et al.  Photoionization of strontium for trapped-ion quantum information processing , 2006, quant-ph/0607055.

[15]  Miguel Fuentes-Cabrera,et al.  First-principles transversal DNA conductance deconstructed. , 2006, Biophysical journal.

[16]  K. Schulten,et al.  Simulation of the electric response of DNA translocation through a semiconductor nanopore–capacitor , 2006 .

[17]  Peter L. Freddolino,et al.  The role of molecular modeling in bionanotechnology , 2006 .

[18]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[19]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[20]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[21]  Sam F Y Li,et al.  Miniaturized detection technology in molecular diagnostics , 2005, Expert review of molecular diagnostics.

[22]  Chi-Ming Chen Driven translocation dynamics of polynucleotides through a nanopore: off-lattice Monte-Carlo simulations , 2005 .

[23]  K. Schulten,et al.  Microscopic Kinetics of DNA Translocation through synthetic nanopores. , 2004, Biophysical journal.

[24]  P. Zoller,et al.  Coupled ion-nanomechanical systems. , 2004, Physical review letters.

[25]  Bettina M. Mayr,et al.  Applicability of tandem mass spectrometry to the automated comparative sequencing of long-chain oligonucleotides , 2004, Journal of the American Society for Mass Spectrometry.

[26]  C. Wunderlich,et al.  Thermally activated hopping of two ions trapped in a bistable potential well , 2004 .

[27]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[28]  Chi-Ming Chen,et al.  Nanopore sequencing of polynucleotides assisted by a rotating electric field , 2003 .

[29]  J. Schiffer Order in confined ions , 2003 .

[30]  Wei Xu,et al.  Invariant Measures and Lyapunov Exponents for Stochastic Mathieu System , 2002 .

[31]  J. Casademunt,et al.  Stochastic Modeling of the Residual Acceleration Field in a Microgravity Environment , 2001 .

[32]  C. Foot,et al.  Influence of background pressure on the stability region of a Paul trap , 2001 .

[33]  G. Castle,et al.  A nonlinear model of AC-field-induced parametric waves on a water surface , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[34]  Satish Kumar Parametrically driven surface waves in viscoelastic liquids , 1999 .

[35]  M. Feng,et al.  Ordered structures of a few ions in the Paul trap , 1999 .

[36]  D. Arnott,et al.  Rapid identification of comigrating gel‐isolated proteins by ion trap‐mass spectrometry , 1998, Electrophoresis.

[37]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[38]  K. Uehara,et al.  Dynamics of a single particle in a Paul trap in the presence of the damping force , 1995 .

[39]  Patrick Gill,et al.  Laser-cooling effects in few-ion clouds of Yb+ , 1994 .

[40]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[41]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[42]  H. Winter,et al.  Simple demonstration of storing macroscopic particles in a ‘‘Paul trap’’ , 1991 .

[43]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[44]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[45]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[46]  D. Wineland,et al.  Spectroscopy of a single Mg+ ion , 1981 .

[47]  M. Hohenstatt,et al.  Localized visible Ba + mono-ion oscillator , 1980 .

[48]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[49]  F. Palitti,et al.  Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis , 2008 .

[50]  J. Wells,et al.  Characterization of the tunneling conductance across DNA bases. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  P. Ut Simulating an electrochemical interface using charge dynamics , 2005 .

[52]  T. Cheatham,et al.  Molecular dynamics simulation of nucleic acids: Successes, limitations, and promise * , 2000, Biopolymers.

[53]  H. Walther From a single ion to a mesoscopic system - crystallization of ions in Paul traps , 1995 .

[54]  David J. Wineland,et al.  Cooling methods in ion traps , 1995 .