THE 3x + 1 PROBLEM: TWO STOCHASTIC MODELS

[1]  Charles J. Mode,et al.  A general age-dependent branching process. II , 1968 .

[2]  R. Azencott,et al.  Mélanges d'équations différentielles et grands écarts à la loi des grands nombres , 1977 .

[3]  C. J. Everett Iteration of the number-theoretic function f(2n) = n, f(2n + 1) = 3n + 2 , 1977 .

[4]  Richard E. Crandall,et al.  On the $‘‘3x+1”$ problem , 1978 .

[5]  K. Matthews,et al.  A generalization of Hasse's generalization of the Syracuse algorithm , 1984 .

[6]  J. Biggins THE FIRST- AND LAST-BIRTH PROBLEMS FOR A MULTITYPE AGE-DEPENDENT BRANCHING PROCESS , 1976 .

[7]  J. Biggins Chernoff's theorem in the branching random walk , 1977, Journal of Applied Probability.

[8]  Daniel A. Rawsthorne Imitation of an Iteration , 1985 .

[9]  J. Kingman The First Birth Problem for an Age-dependent Branching Process , 1975 .

[10]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[11]  K. Matthews,et al.  A Markov approach to the generalized Syracuse algorithm , 1985 .

[12]  Peter Ney,et al.  Convexity and Large Deviations , 1984 .

[13]  R. Terras,et al.  A stopping time problem on the positive integers , 1976 .

[14]  Gary T. Leavens A Distributed Search Program for the 3x + 1 Problem , 1989 .

[15]  Kenny S. Crump,et al.  An Age-Dependent Branching Process with Correlations Among Sister Cells , 1969 .

[16]  Lajos Takács,et al.  Combinatorial Methods in the Theory of Stochastic Processes , 1967 .

[17]  G. Leigh A Markov process underlying the generalized Syracuse algorithm , 1986 .

[18]  D. Varberg Convex Functions , 1973 .

[19]  R. Terras On the existence of a density , 1979 .

[20]  Jeffrey C. Lagarias,et al.  The 3x + 1 Problem and its Generalizations , 1985 .