The Capacity of Private Information Retrieval From Uncoded Storage Constrained Databases

Private information retrieval (PIR) allows a user to retrieve a desired message from a set of databases without revealing the identity of the desired message. The replicated database scenario, where <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> databases store each of the <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> messages was considered by Sun and Jafar, and the optimal download cost was characterized as <inline-formula> <tex-math notation="LaTeX">$\left ({1+ \frac {1}{N}+ \frac {1}{N^{2}}+ \cdots + \frac {1}{N^{K-1}}}\right)$ </tex-math></inline-formula>. In this work, we consider the problem of PIR from <italic>uncoded storage constrained</italic> databases. Each database has a storage capacity of <inline-formula> <tex-math notation="LaTeX">$\mu KL$ </tex-math></inline-formula> bits, where <inline-formula> <tex-math notation="LaTeX">$L$ </tex-math></inline-formula> is the size of each message in bits, and <inline-formula> <tex-math notation="LaTeX">$\mu \in [{1/N, 1}]$ </tex-math></inline-formula> is the normalized storage. The novel aspect of this work is to characterize the optimum download cost of PIR from uncoded storage constrained databases for any “normalized storage” value in the range <inline-formula> <tex-math notation="LaTeX">$\mu \in [{1/N, 1}]$ </tex-math></inline-formula>. In particular, for any <inline-formula> <tex-math notation="LaTeX">$(N,K)$ </tex-math></inline-formula>, we show that the optimal trade-off between normalized storage, <inline-formula> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula>, and the download cost, <inline-formula> <tex-math notation="LaTeX">$D(\mu)$ </tex-math></inline-formula>, is a piece-wise linear function given by the lower convex hull of the <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> pairs <inline-formula> <tex-math notation="LaTeX">$\left ({\frac {t}{N}, \left ({1+ \frac {1}{t}+ \frac {1}{t^{2}}+ \cdots + \frac {1}{t^{K-1}}}\right)}\right)$ </tex-math></inline-formula> for <inline-formula> <tex-math notation="LaTeX">$t=1,2,\ldots, N$ </tex-math></inline-formula>. To prove this result, we first present a storage constrained PIR scheme for any <inline-formula> <tex-math notation="LaTeX">$(N,K)$ </tex-math></inline-formula>. Next, we obtain a general lower bound on the download cost for PIR, which is valid for any arbitrary storage architecture. The uncoded storage assumption is then applied which allows us to express the lower bound as a linear program (LP). Finally, we solve the LP to obtain tight lower bounds on the download cost for different regimes of storage, which match the proposed storage constrained PIR scheme.

[1]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.

[2]  Hua Sun,et al.  Private Information Retrieval from MDS Coded Data With Colluding Servers: Settling a Conjecture by Freij-Hollanti et al. , 2018, IEEE Transactions on Information Theory.

[3]  Dawn Xiaodong Song,et al.  Practical techniques for searches on encrypted data , 2000, Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000.

[4]  Camilla Hollanti,et al.  Robust Private Information Retrieval from Coded Systems with Byzantine and Colluding Servers , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[5]  Chao Tian,et al.  A Shannon-Theoretic Approach to the Storage-Retrieval Tradeoff in PIR Systems , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[6]  Hua Sun,et al.  Multiround Private Information Retrieval: Capacity and Storage Overhead , 2016, IEEE Transactions on Information Theory.

[7]  Urs Niesen,et al.  Decentralized coded caching attains order-optimal memory-rate tradeoff , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[8]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[9]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2017, IEEE Transactions on Information Theory.

[10]  Sennur Ulukus,et al.  Private Information Retrieval Through Wiretap Channel II: Privacy Meets Security , 2018, IEEE Transactions on Information Theory.

[11]  Swanand Kadhe,et al.  Private Information Retrieval With Side Information , 2017, IEEE Transactions on Information Theory.

[12]  Sennur Ulukus,et al.  Asymmetry Hurts: Private Information Retrieval Under Asymmetric Traffic Constraints , 2018, IEEE Transactions on Information Theory.

[13]  Bane V. Vasic,et al.  Towards the exact rate-memory trade-off for uncoded caching with secure delivery , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[14]  Hua Sun,et al.  The Capacity of Robust Private Information Retrieval With Colluding Databases , 2016, IEEE Transactions on Information Theory.

[15]  Salim El Rouayheb,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[16]  Sennur Ulukus,et al.  Fundamental Limits of Cache-Aided Private Information Retrieval With Unknown and Uncoded Prefetching , 2017, IEEE Transactions on Information Theory.

[17]  Gennian Ge,et al.  Private Information Retrieval from MDS Coded Databases with Colluding Servers under Several Variant Models , 2017, 1705.03186.

[18]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Heterogeneous Uncoded Caching Databases , 2019, IEEE Transactions on Information Theory.

[19]  Kannan Ramchandran,et al.  One extra bit of download ensures perfectly private information retrieval , 2014, 2014 IEEE International Symposium on Information Theory.

[20]  Hirosuke Yamamoto,et al.  Private information retrieval for coded storage , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[21]  Mikael Skoglund,et al.  Symmetric private information retrieval for MDS coded distributed storage , 2016, 2017 IEEE International Conference on Communications (ICC).

[22]  Ravi Tandon,et al.  Private Information Retrieval from Storage Constrained Databases - Coded Caching meets PIR , 2017, ArXiv.

[23]  Ravi Tandon,et al.  Near Optimal Coded Data Shuffling for Distributed Learning , 2018, IEEE Transactions on Information Theory.

[24]  Rafail Ostrovsky,et al.  A Survey of Single-Database Private Information Retrieval: Techniques and Applications , 2007, Public Key Cryptography.

[25]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval from Byzantine and Colluding Databases , 2017, IEEE Transactions on Information Theory.

[26]  Urs Niesen,et al.  Fundamental limits of caching , 2012, 2013 IEEE International Symposium on Information Theory.

[27]  Ravi Tandon,et al.  Approximately Optimal Distributed Data Shuffling , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[28]  Camilla Hollanti,et al.  Private Information Retrieval from Coded Databases with Colluding Servers , 2016, SIAM J. Appl. Algebra Geom..

[29]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval from Decentralized Uncoded Caching Databases , 2019, Inf..

[30]  Hua Sun,et al.  The Capacity of Symmetric Private Information Retrieval , 2016, 2016 IEEE Globecom Workshops (GC Wkshps).

[31]  Deepak Kumar,et al.  The Capacity of Uncoded Storage Constrained PIR , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[32]  Daniela Tuninetti,et al.  On the optimality of uncoded cache placement , 2015, 2016 IEEE Information Theory Workshop (ITW).

[33]  Shubhangi Saraf,et al.  Locally Decodable Codes , 2016, Encyclopedia of Algorithms.

[34]  William Gasarch A Survey on Private Information Retrieval , 2004 .

[35]  Syed Ali Jafar,et al.  The Capacity of Private Information Retrieval with Private Side Information , 2017, ArXiv.

[36]  Ravi Tandon,et al.  PIR from Storage Constrained Databases - Coded Caching Meets PIR , 2018, 2018 IEEE International Conference on Communications (ICC).

[37]  Gennian Ge,et al.  Multi-file Private Information Retrieval from MDS Coded Databases with Colluding Servers , 2017, ArXiv.

[38]  Sennur Ulukus,et al.  Multi-Message Private Information Retrieval: Capacity Results and Near-Optimal Schemes , 2017, IEEE Transactions on Information Theory.

[39]  Ravi Tandon,et al.  The capacity of cache aided private information retrieval , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).