Alginate Hydrogel: A Shapeable and Versatile Platform for in Situ Preparation of Metal-Organic Framework-Polymer Composites.

This work reports a novel in situ growth approach for incorporating metal-organic framework (MOF) materials into an alginate substrate, which overcomes the challenges of processing MOF particles into specially shaped structures for real industrial applications. The MOF-alginate composites are prepared through the post-treatment of a metal ion cross-linked alginate hydrogel with a MOF ligand solution. MOF particles are well distributed and embedded in and on the surface of the composites. The macroscopic shape of the composite can be designed by controlling the shape of the corresponding hydrogel; thus MOF-alginate beads, fibers, and membranes are obtained. In addition, four different MOF-alginate composites, including HKUST-1-, ZIF-8-, MIL-100(Fe)-, and ZIF-67-alginate, were successfully prepared using different metal ion cross-linked alginate hydrogels. The mechanism of formation is revealed, and the composite is demonstrated to be an effective absorbent for water purification.

[1]  E. Chan,et al.  Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems , 2016 .

[2]  D. Mooney,et al.  Alginate: properties and biomedical applications. , 2012, Progress in polymer science.

[3]  P. Webley,et al.  Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel , 2011 .

[4]  Seth M. Cohen,et al.  In Situ Modification of Metal-Organic Frameworks in Mixed-Matrix Membranes. , 2015, Angewandte Chemie.

[5]  Tai‐Shung Chung,et al.  Room temperature ionic liquid/ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO2 capture , 2013 .

[6]  F. Kapteijn,et al.  Metal-Organic Frameworks: Visualizing MOF Mixed Matrix Membranes at the Nanoscale: Towards Structure-Performance Relationships in CO2/CH4 Separation Over NH2-MIL-53(Al)@PI (Adv. Funct. Mater. 2/2014) , 2014 .

[7]  Shiping Zhu,et al.  Preparation of raspberry-like ZIF-8/PS composite spheres via dispersion polymerization. , 2015, Dalton transactions.

[8]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[9]  Jun Fu,et al.  Versatile controlled ion release for synthesis of recoverable hybrid hydrogels with high stretchability and notch-insensitivity. , 2015, Chemical communications.

[10]  Shiping Zhu,et al.  Reversibly Dispersible/Collectable Metal‐Organic Frameworks Prepared by Grafting Thermally Responsive and Switchable Polymers , 2015 .

[11]  S. Kaskel,et al.  Ultrahigh porosity in mesoporous MOFs: promises and limitations. , 2014, Chemical communications.

[12]  S. Granick,et al.  Electric field-induced assembly of monodisperse polyhedral metal-organic framework crystals. , 2013, Journal of the American Chemical Society.

[13]  M. Marcello,et al.  MOF‐Polymer Composite Microcapsules Derived from Pickering Emulsions , 2013, Advanced materials.

[14]  Huanting Wang,et al.  A fast in situ seeding route to the growth of a zeolitic imidazolate framework-8/AAO composite membrane at room temperature , 2014 .

[15]  M. Jolly,et al.  MOF Processing by Electrospinning for Functional Textiles , 2011 .

[16]  Phillip M. Hannam,et al.  Electrospun fibrous mats as skeletons to produce free-standing MOF membranes , 2012 .

[17]  Jong Hak Kim,et al.  Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO2/CH4 gas separation , 2015 .

[18]  G. Skjåk-Bræk,et al.  Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads , 1989, Biotechnology and bioengineering.

[19]  O. Shekhah,et al.  Step-by-step route for the synthesis of metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[20]  Dan Zhao,et al.  Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance , 2015 .

[21]  J. R. Johnson,et al.  Interfacial microfluidic processing of metal-organic framework hollow fiber membranes , 2014, Science.

[22]  Michael J. Katz,et al.  Destruction of chemical warfare agents using metal-organic frameworks. , 2015, Nature materials.

[23]  Bo Wang,et al.  MOF derived composites for cathode protection: coatings of LiCoO2 from UiO-66 and MIL-53 as ultra-stable cathodes. , 2015, Chemical communications.

[24]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[25]  S. Kitagawa,et al.  Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. , 2012, Nature materials.

[26]  Shiping Zhu,et al.  A versatile and facile surface modification route based on polydopamine for the growth of MOF films on different substrates , 2015 .

[27]  J. Caro,et al.  Comparative Study of MIL-96(Al) as Continuous Metal-Organic Frameworks Layer and Mixed-Matrix Membrane. , 2016, ACS applied materials & interfaces.

[28]  Rui Zhang,et al.  In situ growth of continuous thin metal–organic framework film for capacitive humidity sensing , 2011 .

[29]  G. Shimizu,et al.  Proton Conduction with Metal-Organic Frameworks , 2013, Science.

[30]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[31]  Z. Suo,et al.  Highly stretchable and tough hydrogels , 2012, Nature.

[32]  Ziqi Wang,et al.  Mixed-Metal-Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium-Sulfur Batteries. , 2015, ACS applied materials & interfaces.

[33]  Omar K Farha,et al.  Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? , 2012, Journal of the American Chemical Society.

[34]  Omar M Yaghi,et al.  Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. , 2005, Journal of the American Chemical Society.

[35]  A. Cheetham,et al.  Amorphous metal-organic frameworks for drug delivery. , 2015, Chemical communications.

[36]  J. Urban,et al.  Enhanced permeation arising from dual transport pathways in hybrid polymer–MOF membranes , 2016 .

[37]  W. Shen,et al.  Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. , 2016, Angewandte Chemie.

[38]  Kira Khaletskaya,et al.  Engineering Zeolitic‐Imidazolate Framework (ZIF) Thin Film Devices for Selective Detection of Volatile Organic Compounds , 2015 .

[39]  Ivan Donati,et al.  Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. , 2006, Biomacromolecules.

[40]  S. Qiu,et al.  Metal-organic framework membranes: from synthesis to separation application. , 2014, Chemical Society reviews.

[41]  G. Shimizu,et al.  A water-stable metal-organic framework with highly acidic pores for proton-conducting applications. , 2013, Journal of the American Chemical Society.

[42]  S. Kitagawa,et al.  Crystal morphology-directed framework orientation in porous coordination polymer films and freestanding membranes via Langmuir–Blodgettry , 2012 .

[43]  I. Zhitomirsky,et al.  Preparation of metal–organic framework films by electrophoretic deposition method , 2015 .

[44]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[45]  Guodong Qian,et al.  A luminescent microporous metal-organic framework for the recognition and sensing of anions. , 2008, Journal of the American Chemical Society.

[46]  L. F. Castillo,et al.  Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylen , 2011 .

[47]  A. Emwas,et al.  MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc-MOF for CH4, O2, and CO2 Storage , 2015, Journal of the American Chemical Society.

[48]  Chengdu Liang,et al.  A microporous metal-organic framework for gas-chromatographic separation of alkanes. , 2006, Angewandte Chemie.

[49]  S. Kovačič,et al.  Synthesis and Catalytic Performance of Hierarchically Porous MIL-100(Fe)@polyHIPE Hybrid Membranes. , 2015, Macromolecular rapid communications.

[50]  Ting Yang,et al.  Poly-/metal-benzimidazole nano-composite membranes for hydrogen purification , 2011 .

[51]  F. Kapteijn,et al.  Metal Organic Framework Crystals in Mixed‐Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance , 2016, Advanced functional materials.

[52]  Xinsheng Peng,et al.  Pressure-assisted synthesis of HKUST-1 thin film on polymer hollow fiber at room temperature toward gas separation. , 2014, ACS applied materials & interfaces.

[53]  Zhigang Suo,et al.  Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. , 2013, ACS applied materials & interfaces.

[54]  D. Bradshaw,et al.  Metal-organic framework growth at functional interfaces: thin films and composites for diverse applications. , 2012, Chemical Society reviews.

[55]  S. Basu,et al.  Asymmetric Matrimid®/[Cu3(BTC)2] mixed-matrix membranes for gas separations , 2010 .

[56]  Seth M. Cohen,et al.  Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks , 2012 .