Projection-operator-based Newton method for the trajectory optimization of closed quantum systems

Quantum optimal control is an important technology that enables fast state preparation and gate design. In the absence of an analytic solution, most quantum optimal control methods rely on an iterative scheme to update the solution estimate. At present, the convergence rate of existing solvers is, at most, superlinear. This paper develops a new general purpose solver for quantum optimal control based on the PRojection Operator Newton method for Trajectory Optimization, or PRONTO. Specifically, the proposed approach uses a projection operator to incorporate the Schr¨odinger equation directly into the cost function, which is then minimized using a Newton descent method. At each iteration, the descent direction is obtained by computing the analytic solution to a linear-quadratic trajectory optimization problem. The resulting method guarantees monotonic convergence at every iteration and quadratic convergence in proximity of the solution. The potential of PRONTO is showcased by solving the optimal state-to-state mapping problem for a qubit and providing comparisons to a state-of-the-art quantum optimal control method.

[1]  Shai Machnes,et al.  An introduction into optimal control for quantum technologies , 2020, 2003.10132.

[2]  Christiane P. Koch,et al.  Krotov: A Python implementation of Krotov's method for quantum optimal control , 2019, SciPost Physics.

[3]  Christiane P. Koch,et al.  Training Schrödinger’s cat: quantum optimal control , 2015, 1508.00442.

[4]  Claudio Altafini,et al.  Modeling and Control of Quantum Systems: An Introduction , 2012, IEEE Transactions on Automatic Control.

[5]  Christiane P Koch,et al.  Monotonically convergent optimization in quantum control using Krotov's method. , 2010, The Journal of chemical physics.

[6]  David J. Tannor,et al.  Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods , 2011 .

[7]  S. Glaser,et al.  Second order gradient ascent pulse engineering. , 2011, Journal of magnetic resonance.

[8]  A. Gruslys,et al.  Comparing, optimizing, and benchmarking quantum-control algorithms in a unifying programming framework , 2010, 1011.4874.

[9]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[10]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[11]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[12]  J M Gambetta,et al.  Simple pulses for elimination of leakage in weakly nonlinear qubits. , 2009, Physical review letters.

[13]  Christiane P. Koch,et al.  Protecting coherence in optimal control theory : State-dependent constraint approach , 2008, 0803.0921.

[14]  Bassam Bamieh,et al.  Optimal Population Transfers in a Quantum System for Large Transfer Time , 2004, IEEE Transactions on Automatic Control.

[15]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[16]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[17]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[18]  R. Kosloff,et al.  Optimal control theory for unitary transformations , 2003, quant-ph/0309011.

[19]  J. Hauser On the computation of optimal state transfers with application to the control of quantum spin systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[20]  Shlomo E. Sklarz,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002, cond-mat/0209195.

[21]  J. Hauser A PROJECTION OPERATOR APPROACH TO THE OPTIMIZATION OF TRAJECTORY FUNCTIONALS , 2002 .

[22]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[23]  D. D'Alessandro,et al.  Optimal control of two-level quantum systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[24]  S. Lloyd,et al.  Quantum Computation over Continuous Variables , 1998, quant-ph/9810082.

[25]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[26]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[27]  L. Cesari Problems of Optimization—A General View , 1983 .

[28]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .