Evolving Instance Specific Algorithm Configuration
暂无分享,去创建一个
[1] F. Hutter,et al. ParamILS: an automatic algorithm configuration framework , 2009 .
[2] Barry O'Sullivan,et al. Comparing Solution Methods for the Machine Reassignment Problem , 2012, CP.
[3] Kevin Leyton-Brown,et al. SATzilla2009: an Automatic Algorithm Portfolio for SAT , 2008 .
[4] Bart Selman,et al. Algorithm portfolios , 2001, Artif. Intell..
[5] H. Abdi,et al. Principal component analysis , 2010 .
[6] S. P. Lloyd,et al. Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.
[7] Alex S. Fukunaga,et al. Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.
[8] John Thornton,et al. Additive versus Multiplicative Clause Weighting for SAT , 2004, AAAI.
[9] Andrea Lodi,et al. MIPLIB 2010 , 2011, Math. Program. Comput..
[10] Holger H. Hoos,et al. An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.
[11] Bart Selman,et al. Problem Structure in the Presence of Perturbations , 1997, AAAI/IAAI.
[12] Yuri Malitsky,et al. Instance-Specific Algorithm Configuration as a Method for Non-Model-Based Portfolio Generation , 2012, CPAIOR.
[13] George C. Runger,et al. Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.
[14] Kevin Leyton-Brown,et al. SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..
[15] L. Hubert,et al. Comparing partitions , 1985 .
[16] Francis J. Vasko,et al. Optimal Selection of Ingot Sizes Via Set Covering , 1987, Oper. Res..
[17] David G. Lowe,et al. Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.
[18] M. Mézard,et al. Survey propagation: An algorithm for satisfiability , 2005 .
[19] Yuri Malitsky,et al. ISAC - Instance-Specific Algorithm Configuration , 2010, ECAI.
[20] Kate Smith-Miles,et al. Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.
[21] Mihai Oltean,et al. Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.
[22] Meinolf Sellmann,et al. The Accuracy of Search Heuristics: An Empirical Study on Knapsack Problems , 2008, CPAIOR.
[23] Yuri Malitsky,et al. Stochastic Offline Programming , 2009, ICTAI.
[24] Kevin Leyton-Brown,et al. : The Design and Analysis of an Algorithm Portfolio for SAT , 2007, CP.
[25] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.
[26] Luca Pulina,et al. Collaborative Expert Portfolio Management , 2010, AAAI.
[27] Philippe Refalo,et al. Impact-Based Search Strategies for Constraint Programming , 2004, CP.
[28] Bart Selman,et al. Evidence for Invariants in Local Search , 1997, AAAI/IAAI.
[29] Marek Petrik,et al. Learning Static Parallel Portfolios of Algorithms , 2006, ISAIM.
[30] Roberto Battiti,et al. The Reactive Tabu Search , 1994, INFORMS J. Comput..
[31] Frank Hutter,et al. Parameter Adjustment Based on Performance Prediction: Towards an Instance-Aware Problem Solver , 2005 .
[32] Carlos Ansótegui,et al. Disco - Novo - GoGo: Integrating Local Search and Complete Search with Restarts , 2006, AAAI.
[33] Thorsten Koch,et al. Branching rules revisited , 2005, Oper. Res. Lett..
[34] Kevin Leyton-Brown,et al. Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection , 2010, AAAI.
[35] Ashiqur R. KhudaBukhsh,et al. SATenstein: automatically building local search SAT solvers from components , 2009, IJCAI 2009.
[36] Susan L. Epstein,et al. The Adaptive Constraint Engine , 2002, CP.
[37] Michel Lemaître,et al. Branch and Bound Algorithm Selection by Performance Prediction , 1998, AAAI/IAAI.
[38] Yuri Malitsky,et al. Algorithm Portfolios Based on Cost-Sensitive Hierarchical Clustering , 2013, IJCAI.
[39] Bart Selman,et al. Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .
[40] Stephen F. Smith,et al. Combining Multiple Heuristics Online , 2007, AAAI.
[41] Michail G. Lagoudakis,et al. Learning to Select Branching Rules in the DPLL Procedure for Satisfiability , 2001, Electron. Notes Discret. Math..
[42] Toby Walsh,et al. Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.
[43] M. Padberg,et al. Solving airline crew scheduling problems by branch-and-cut , 1993 .
[44] Predrag Janicic,et al. Instance-Based Selection of Policies for SAT Solvers , 2009, SAT.
[45] Efthymios Housos,et al. Automatic Optimization of Subproblems in Scheduling Airline Crews , 1997 .
[46] Marijn J. H. Heule,et al. March_eq: Implementing Additional Reasoning into an Efficient Look-Ahead SAT Solver , 2004, SAT (Selected Papers.
[47] Risto Miikkulainen,et al. Latent class models for algorithm portfolio methods , 2010, AAAI 2010.
[48] Tad Hogg,et al. An Economics Approach to Hard Computational Problems , 1997, Science.
[49] Yoav Shoham,et al. Understanding Random SAT: Beyond the Clauses-to-Variables Ratio , 2004, CP.
[50] Kevin P. Murphy,et al. Time-Bounded Sequential Parameter Optimization , 2010, LION.
[51] Greg Hamerly,et al. Learning the k in k-means , 2003, NIPS.
[52] Barry O'Sullivan,et al. Tuning Parameters of Large Neighborhood Search for the Machine Reassignment Problem , 2013, CPAIOR.
[53] Serdar Kadioglu,et al. Dialectic Search , 2009, CP.
[54] Andrew W. Moore,et al. X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.
[55] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[56] Andrea Lodi,et al. Mixed Integer Programming Library version 5 , 2011 .
[57] Stephen F. Smith,et al. New Techniques for Algorithm Portfolio Design , 2008, UAI.
[58] Yoav Shoham,et al. Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.
[59] Carlos Ansótegui,et al. A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.
[60] Xavier Lorca,et al. Choco: an Open Source Java Constraint Programming Library , 2008 .
[61] Toby Walsh,et al. Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.
[62] Martin W. P. Savelsbergh,et al. Valid inequalities for problems with additive variable upper bounds , 2001, Math. Program..
[63] Manuel Laguna,et al. Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..
[64] Yoav Shoham,et al. Boosting as a Metaphor for Algorithm Design , 2003, CP.
[65] Jürgen Schmidhuber,et al. Dynamic Algorithm Portfolios , 2006, AI&M.
[66] Kerstin Eder,et al. International Symposium on Code Generation and Optimization. CGO 2003 , 2003, International Symposium on Code Generation and Optimization, 2003. CGO 2003..
[67] Nysret Musliu,et al. Local Search Algorithm for Unicost Set Covering Problem , 2006, IEA/AIE.
[68] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[69] Alper Atamtürk,et al. Flow pack facets of the single node fixed-charge flow polytope , 2001, Oper. Res. Lett..
[70] Yoav Shoham,et al. A portfolio approach to algorithm select , 2003, IJCAI 2003.
[71] Gilles Audemard,et al. GLUCOSE : a solver that predicts learnt clauses quality , 2009 .
[72] Kaile Su,et al. Configuration Checking with Aspiration in Local Search for SAT , 2012, AAAI.
[73] CHARLES AUDET,et al. Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization , 2006, SIAM J. Optim..
[74] Horst Samulowitz,et al. Learning to Solve QBF , 2007, AAAI.
[75] Thomas Stützle,et al. A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.
[76] Simon Otjes,et al. The Netherlands: The Netherlands , 2010 .
[77] G. Dantzig,et al. THE DECOMPOSITION ALGORITHM FOR LINEAR PROGRAMS , 1961 .
[78] Steven David Prestwich,et al. Random Walk with Continuously Smoothed Variable Weights , 2005, SAT.
[79] David A. Padua,et al. Optimizing sorting with genetic algorithms , 2005, International Symposium on Code Generation and Optimization.
[80] Martin Gebser,et al. Solution Enumeration for Projected Boolean Search Problems , 2009, CPAIOR.
[81] Alper Atamtürk,et al. On the facets of the mixed–integer knapsack polyhedron , 2003, Math. Program..
[82] Kevin Leyton-Brown,et al. Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.
[83] William M. Rand,et al. Objective Criteria for the Evaluation of Clustering Methods , 1971 .
[84] Toby Walsh,et al. Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications , 2009 .
[85] Eoin O'Mahony,et al. Using Case-based Reasoning in an Algorithm Portfolio for Constraint Solving ? , 2008 .
[86] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[87] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[88] Henry A. Kautz,et al. Auto-Walksat: A Self-Tuning Implementation of Walksat , 2001, Electron. Notes Discret. Math..
[89] Holger H. Hoos,et al. Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.
[90] Yuri Malitsky,et al. Non-Model-Based Algorithm Portfolios for SAT , 2011, SAT.
[91] H. Terashima-Marín,et al. Evolution of Constraint Satisfaction strategies in examination timetabling , 1999 .
[92] Osamu Watanabe,et al. On a Positive Instance Generation for the 3-Satisfiability (3SAT) Problem , 1996 .
[93] Matteo Fischetti,et al. Algorithms for railway crew management , 1997, Math. Program..
[94] Alper Atamtürk,et al. A study of the lot-sizing polytope , 2004, Math. Program..
[95] Yuri Malitsky,et al. Algorithm Selection and Scheduling , 2011, CP.
[96] Charles S. ReVelle,et al. The Location of Emergency Service Facilities , 1971, Oper. Res..
[97] Steven Minton,et al. Automatically configuring constraint satisfaction programs: A case study , 1996, Constraints.
[98] David Pearce,et al. Equilibrium logic , 2006, Annals of Mathematics and Artificial Intelligence.
[99] Andrew W. Moore,et al. Learning Evaluation Functions to Improve Optimization by Local Search , 2001, J. Mach. Learn. Res..