Evolving Instance Specific Algorithm Configuration

One of the main underlying themes of the previous chapters has been to demonstrate that there is no single solver that performs best across a broad set of problem types and domains. It is therefore necessary to develop algorithm portfolios, where, when confronted with a new instance, the solver selects the approach best suited for satisfying the desired objective. This process can then be further refined to intelligently create portfolios of diverse solvers through the use of instance-oblivious parameter tuners. However, all of the approaches described thus far take a static view of the learning process. Once a portfolio has been trained, no other refinements take place regardless the amount of new data that becomes available. This chapter, therefore, focuses on an approach that demonstrates that it is at times necessary to retrain a portfolio as new instances become available. This is done by identifying when the incoming instances become sufficiently different from everything observed before, thus requiring a retraining step. The chapter shows how to identify this moment and how by doing so efficiently we can create an improved portfolio over the train-once methodology.

[1]  F. Hutter,et al.  ParamILS: an automatic algorithm configuration framework , 2009 .

[2]  Barry O'Sullivan,et al.  Comparing Solution Methods for the Machine Reassignment Problem , 2012, CP.

[3]  Kevin Leyton-Brown,et al.  SATzilla2009: an Automatic Algorithm Portfolio for SAT , 2008 .

[4]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[5]  H. Abdi,et al.  Principal component analysis , 2010 .

[6]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[7]  Alex S. Fukunaga,et al.  Automated Discovery of Local Search Heuristics for Satisfiability Testing , 2008, Evolutionary Computation.

[8]  John Thornton,et al.  Additive versus Multiplicative Clause Weighting for SAT , 2004, AAAI.

[9]  Andrea Lodi,et al.  MIPLIB 2010 , 2011, Math. Program. Comput..

[10]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[11]  Bart Selman,et al.  Problem Structure in the Presence of Perturbations , 1997, AAAI/IAAI.

[12]  Yuri Malitsky,et al.  Instance-Specific Algorithm Configuration as a Method for Non-Model-Based Portfolio Generation , 2012, CPAIOR.

[13]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[14]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..

[15]  L. Hubert,et al.  Comparing partitions , 1985 .

[16]  Francis J. Vasko,et al.  Optimal Selection of Ingot Sizes Via Set Covering , 1987, Oper. Res..

[17]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[18]  M. Mézard,et al.  Survey propagation: An algorithm for satisfiability , 2005 .

[19]  Yuri Malitsky,et al.  ISAC - Instance-Specific Algorithm Configuration , 2010, ECAI.

[20]  Kate Smith-Miles,et al.  Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.

[21]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.

[22]  Meinolf Sellmann,et al.  The Accuracy of Search Heuristics: An Empirical Study on Knapsack Problems , 2008, CPAIOR.

[23]  Yuri Malitsky,et al.  Stochastic Offline Programming , 2009, ICTAI.

[24]  Kevin Leyton-Brown,et al.  : The Design and Analysis of an Algorithm Portfolio for SAT , 2007, CP.

[25]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[26]  Luca Pulina,et al.  Collaborative Expert Portfolio Management , 2010, AAAI.

[27]  Philippe Refalo,et al.  Impact-Based Search Strategies for Constraint Programming , 2004, CP.

[28]  Bart Selman,et al.  Evidence for Invariants in Local Search , 1997, AAAI/IAAI.

[29]  Marek Petrik,et al.  Learning Static Parallel Portfolios of Algorithms , 2006, ISAIM.

[30]  Roberto Battiti,et al.  The Reactive Tabu Search , 1994, INFORMS J. Comput..

[31]  Frank Hutter,et al.  Parameter Adjustment Based on Performance Prediction: Towards an Instance-Aware Problem Solver , 2005 .

[32]  Carlos Ansótegui,et al.  Disco - Novo - GoGo: Integrating Local Search and Complete Search with Restarts , 2006, AAAI.

[33]  Thorsten Koch,et al.  Branching rules revisited , 2005, Oper. Res. Lett..

[34]  Kevin Leyton-Brown,et al.  Hydra: Automatically Configuring Algorithms for Portfolio-Based Selection , 2010, AAAI.

[35]  Ashiqur R. KhudaBukhsh,et al.  SATenstein: automatically building local search SAT solvers from components , 2009, IJCAI 2009.

[36]  Susan L. Epstein,et al.  The Adaptive Constraint Engine , 2002, CP.

[37]  Michel Lemaître,et al.  Branch and Bound Algorithm Selection by Performance Prediction , 1998, AAAI/IAAI.

[38]  Yuri Malitsky,et al.  Algorithm Portfolios Based on Cost-Sensitive Hierarchical Clustering , 2013, IJCAI.

[39]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[40]  Stephen F. Smith,et al.  Combining Multiple Heuristics Online , 2007, AAAI.

[41]  Michail G. Lagoudakis,et al.  Learning to Select Branching Rules in the DPLL Procedure for Satisfiability , 2001, Electron. Notes Discret. Math..

[42]  Toby Walsh,et al.  Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.

[43]  M. Padberg,et al.  Solving airline crew scheduling problems by branch-and-cut , 1993 .

[44]  Predrag Janicic,et al.  Instance-Based Selection of Policies for SAT Solvers , 2009, SAT.

[45]  Efthymios Housos,et al.  Automatic Optimization of Subproblems in Scheduling Airline Crews , 1997 .

[46]  Marijn J. H. Heule,et al.  March_eq: Implementing Additional Reasoning into an Efficient Look-Ahead SAT Solver , 2004, SAT (Selected Papers.

[47]  Risto Miikkulainen,et al.  Latent class models for algorithm portfolio methods , 2010, AAAI 2010.

[48]  Tad Hogg,et al.  An Economics Approach to Hard Computational Problems , 1997, Science.

[49]  Yoav Shoham,et al.  Understanding Random SAT: Beyond the Clauses-to-Variables Ratio , 2004, CP.

[50]  Kevin P. Murphy,et al.  Time-Bounded Sequential Parameter Optimization , 2010, LION.

[51]  Greg Hamerly,et al.  Learning the k in k-means , 2003, NIPS.

[52]  Barry O'Sullivan,et al.  Tuning Parameters of Large Neighborhood Search for the Machine Reassignment Problem , 2013, CPAIOR.

[53]  Serdar Kadioglu,et al.  Dialectic Search , 2009, CP.

[54]  Andrew W. Moore,et al.  X-means: Extending K-means with Efficient Estimation of the Number of Clusters , 2000, ICML.

[55]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[56]  Andrea Lodi,et al.  Mixed Integer Programming Library version 5 , 2011 .

[57]  Stephen F. Smith,et al.  New Techniques for Algorithm Portfolio Design , 2008, UAI.

[58]  Yoav Shoham,et al.  Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.

[59]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[60]  Xavier Lorca,et al.  Choco: an Open Source Java Constraint Programming Library , 2008 .

[61]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[62]  Martin W. P. Savelsbergh,et al.  Valid inequalities for problems with additive variable upper bounds , 2001, Math. Program..

[63]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[64]  Yoav Shoham,et al.  Boosting as a Metaphor for Algorithm Design , 2003, CP.

[65]  Jürgen Schmidhuber,et al.  Dynamic Algorithm Portfolios , 2006, AI&M.

[66]  Kerstin Eder,et al.  International Symposium on Code Generation and Optimization. CGO 2003 , 2003, International Symposium on Code Generation and Optimization, 2003. CGO 2003..

[67]  Nysret Musliu,et al.  Local Search Algorithm for Unicost Set Covering Problem , 2006, IEA/AIE.

[68]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[69]  Alper Atamtürk,et al.  Flow pack facets of the single node fixed-charge flow polytope , 2001, Oper. Res. Lett..

[70]  Yoav Shoham,et al.  A portfolio approach to algorithm select , 2003, IJCAI 2003.

[71]  Gilles Audemard,et al.  GLUCOSE : a solver that predicts learnt clauses quality , 2009 .

[72]  Kaile Su,et al.  Configuration Checking with Aspiration in Local Search for SAT , 2012, AAAI.

[73]  CHARLES AUDET,et al.  Finding Optimal Algorithmic Parameters Using Derivative-Free Optimization , 2006, SIAM J. Optim..

[74]  Horst Samulowitz,et al.  Learning to Solve QBF , 2007, AAAI.

[75]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[76]  Simon Otjes,et al.  The Netherlands: The Netherlands , 2010 .

[77]  G. Dantzig,et al.  THE DECOMPOSITION ALGORITHM FOR LINEAR PROGRAMS , 1961 .

[78]  Steven David Prestwich,et al.  Random Walk with Continuously Smoothed Variable Weights , 2005, SAT.

[79]  David A. Padua,et al.  Optimizing sorting with genetic algorithms , 2005, International Symposium on Code Generation and Optimization.

[80]  Martin Gebser,et al.  Solution Enumeration for Projected Boolean Search Problems , 2009, CPAIOR.

[81]  Alper Atamtürk,et al.  On the facets of the mixed–integer knapsack polyhedron , 2003, Math. Program..

[82]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[83]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[84]  Toby Walsh,et al.  Handbook of Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications , 2009 .

[85]  Eoin O'Mahony,et al.  Using Case-based Reasoning in an Algorithm Portfolio for Constraint Solving ? , 2008 .

[86]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[87]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[88]  Henry A. Kautz,et al.  Auto-Walksat: A Self-Tuning Implementation of Walksat , 2001, Electron. Notes Discret. Math..

[89]  Holger H. Hoos,et al.  Scaling and Probabilistic Smoothing: Efficient Dynamic Local Search for SAT , 2002, CP.

[90]  Yuri Malitsky,et al.  Non-Model-Based Algorithm Portfolios for SAT , 2011, SAT.

[91]  H. Terashima-Marín,et al.  Evolution of Constraint Satisfaction strategies in examination timetabling , 1999 .

[92]  Osamu Watanabe,et al.  On a Positive Instance Generation for the 3-Satisfiability (3SAT) Problem , 1996 .

[93]  Matteo Fischetti,et al.  Algorithms for railway crew management , 1997, Math. Program..

[94]  Alper Atamtürk,et al.  A study of the lot-sizing polytope , 2004, Math. Program..

[95]  Yuri Malitsky,et al.  Algorithm Selection and Scheduling , 2011, CP.

[96]  Charles S. ReVelle,et al.  The Location of Emergency Service Facilities , 1971, Oper. Res..

[97]  Steven Minton,et al.  Automatically configuring constraint satisfaction programs: A case study , 1996, Constraints.

[98]  David Pearce,et al.  Equilibrium logic , 2006, Annals of Mathematics and Artificial Intelligence.

[99]  Andrew W. Moore,et al.  Learning Evaluation Functions to Improve Optimization by Local Search , 2001, J. Mach. Learn. Res..