Entropic evidence for a Pomeranchuk effect in magic-angle graphene

[1]  Kenji Watanabe,et al.  Isospin Pomeranchuk effect in twisted bilayer graphene , 2021, Nature.

[2]  Ajesh Kumar,et al.  Lattice collective modes from a continuum model of magic-angle twisted bilayer graphene , 2020, Physical Review B.

[3]  Kenji Watanabe,et al.  Flavour Hund’s coupling, Chern gaps and charge diffusivity in moiré graphene , 2020, Nature.

[4]  Kenji Watanabe,et al.  Isospin Pomeranchuk effect in twisted bilayer graphene , 2020, Nature.

[5]  Kenji Watanabe,et al.  Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene , 2020, Nature Physics.

[6]  Kenji Watanabe,et al.  Strongly correlated Chern insulators in magic-angle twisted bilayer graphene , 2020, Nature.

[7]  T. Taniguchi,et al.  Chern Insulators and Topological Flat-bands in Magic-angle Twisted Bilayer Graphene , 2020, 2007.03735.

[8]  Xiaodong Xu,et al.  Electrically tunable correlated and topological states in twisted monolayer–bilayer graphene , 2020, Nature Physics.

[9]  J. Shan,et al.  Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices , 2020, Nature.

[10]  Y. Oreg,et al.  Cascade of phase transitions and Dirac revivals in magic-angle graphene , 2019, Nature.

[11]  Kenji Watanabe,et al.  Cascade of electronic transitions in magic-angle twisted bilayer graphene , 2019, Nature.

[12]  A. Vishwanath,et al.  Ground State and Hidden Symmetry of Magic-Angle Graphene at Even Integer Filling , 2019, 1911.02045.

[13]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[14]  S. Das Sarma,et al.  Collective Excitations of Quantum Anomalous Hall Ferromagnets in Twisted Bilayer Graphene. , 2019, Physical review letters.

[15]  T. Taniguchi,et al.  Mapping the twist-angle disorder and Landau levels in magic-angle graphene , 2019, Nature.

[16]  B. Bernevig,et al.  All Magic Angles in Twisted Bilayer Graphene are Topological. , 2019, Physical review letters.

[17]  J. Zhu,et al.  Intrinsic quantized anomalous Hall effect in a moiré heterostructure , 2019, Science.

[18]  Kenji Watanabe,et al.  Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene , 2019, Nature.

[19]  Kenji Watanabe,et al.  Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene , 2019, Nature.

[20]  Kenji Watanabe,et al.  Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene , 2019, Nature.

[21]  R. Ashoori,et al.  Electronic Compressibility of Magic-Angle Graphene Superlattices. , 2019, Physical review letters.

[22]  T. Taniguchi,et al.  Phonon scattering dominated electron transport in twisted bilayer graphene , 2019, 1902.00763.

[23]  Kenji Watanabe,et al.  Strange Metal in Magic-Angle Graphene with near Planckian Dissipation. , 2019, Physical review letters.

[24]  M. Kastner,et al.  Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene , 2019, Science.

[25]  G. Refael,et al.  Author Correction: Electronic correlations in twisted bilayer graphene near the magic angle , 2019, Nature Physics.

[26]  T. Taniguchi,et al.  Magic Angle Spectroscopy , 2018, 1812.08776.

[27]  D. Graf,et al.  Tuning superconductivity in twisted bilayer graphene , 2018, Science.

[28]  Bohm-Jung Yang,et al.  Failure of Nielsen-Ninomiya Theorem and Fragile Topology in Two-Dimensional Systems with Space-Time Inversion Symmetry: Application to Twisted Bilayer Graphene at Magic Angle , 2018, Physical Review X.

[29]  A. Vishwanath,et al.  Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene , 2018, Physical Review X.

[30]  Saeed Fallahi,et al.  Direct entropy measurement in a mesoscopic quantum system , 2018, Nature Physics.

[31]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[32]  E. Kaxiras,et al.  Correlated insulator behaviour at half-filling in magic-angle graphene superlattices , 2018, Nature.

[33]  J. Schlueter,et al.  Quantum spin liquids unveil the genuine Mott state , 2017, Nature Materials.

[34]  I. Burmistrov,et al.  Strongly correlated two-dimensional plasma explored from entropy measurements , 2015, Nature Communications.

[35]  R. Bistritzer,et al.  Moiré bands in twisted double-layer graphene , 2010, Proceedings of the National Academy of Sciences.

[36]  P. Vargas,et al.  Flat bands in slightly twisted bilayer graphene: Tight-binding calculations , 2010, 1012.4320.

[37]  A. Reina,et al.  Observation of Van Hove singularities in twisted graphene layers , 2009, 0912.2102.

[38]  B. Spivak,et al.  Transport in two dimensional electronic micro-emulsions , 2005, cond-mat/0510422.

[39]  B. Spivak,et al.  Phases intermediate between a two-dimensional electron liquid and Wigner crystal , 2004 .

[40]  J. Sarrao,et al.  Solid state Pomeranchuk effect , 2004, cond-mat/0408191.

[41]  J. P. Remeika,et al.  Electronic Specific Heat of Metallic Ti-Doped V 2 O 3 , 1971 .