Photodetection of propagating quantum microwaves in circuit QED

We develop the theory of a metamaterial composed of an array of discrete quantum absorbers inside a one-dimensional waveguide that implements a high-efficiency microwave photon detector. A basic design consists of a few metastable superconducting nanocircuits spread inside and coupled to a one-dimensional waveguide in a circuit QED setup. The arrival of a propagating quantum microwave field induces an irreversible change in the population of the internal levels of the absorbers, due to a selective absorption of photon excitations. This design is studied using a formal but simple quantum field theory, which allows us to evaluate the single-photon absorption efficiency for one and many absorber setups. As an example, we consider a particular design that combines a coplanar coaxial waveguide with superconducting phase qubits, a natural but not exclusive playground for experimental implementations. This work and a possible experimental realization may stimulate the possible arrival of 'all-optical' quantum information processing with propagating quantum microwaves, where a microwave photodetector could play a key role.

[1]  Bernard Yurke,et al.  Quantum network theory , 1984 .

[2]  David P. DiVincenzo,et al.  Exploiting Kerr cross nonlinearity in circuit quantum electrodynamics for nondemolition measurements , 2009, 0906.2979.

[3]  M. Mariantoni,et al.  Two-resonator circuit quantum electrodynamics : A superconducting quantum switch , 2007, 0712.2522.

[4]  M. Mariantoni,et al.  Quantum nondemolition photon detection in circuit QED and the quantum Zeno effect , 2009 .

[5]  M. Mariantoni,et al.  On-Chip Microwave Fock States and Quantum Homodyne Measurements , 2005, cond-mat/0509737.

[6]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[7]  Amnon Yariv,et al.  Integrated Optics , 2019, The Microflow Cytometer.

[8]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[9]  Jens Koch,et al.  Nonlinear response of the vacuum Rabi resonance , 2008, 0807.2882.

[10]  Franco Nori,et al.  Controllable scattering of a single photon inside a one-dimensional resonator waveguide. , 2008, Physical review letters.

[11]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[12]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[13]  H. Leduc,et al.  A broadband superconducting detector suitable for use in large arrays , 2003, Nature.

[14]  L Frunzio,et al.  Generating single microwave photons in a circuit. , 2007, Nature.

[15]  Roberto Ramos,et al.  Entangled Macroscopic Quantum States in Two Superconducting Qubits , 2003, Science.

[16]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[17]  John M Martinis,et al.  Decoherence in josephson phase qubits from junction resonators. , 2004, Physical review letters.

[18]  F K Wilhelm,et al.  Quantum superposition of macroscopic persistent-current states. , 2000, Science.

[19]  M. Steffen,et al.  Measurement of the Entanglement of Two Superconducting Qubits via State Tomography , 2006, Science.

[20]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[21]  Clarke,et al.  Energy-level quantization in the zero-voltage state of a current-biased Josephson junction. , 1985, Physical review letters.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  M. Devoret,et al.  Quantum coherence with a single Cooper pair , 1998 .

[24]  E. Solano,et al.  Two-photon probe of the Jaynes-Cummings model and symmetry breaking in circuit QED , 2008, 0805.3294.

[25]  Erik Lucero,et al.  Generation of Fock states in a superconducting quantum circuit , 2008, Nature.

[26]  Shanhui Fan,et al.  Coherent single photon transport in one-dimensional waveguide coupledwith superconducting quantum bits , 2005, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[27]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[28]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[29]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[30]  M. Mariantoni,et al.  Mesoscopic shelving readout of superconducting qubits in circuit quantum electrodynamics , 2009, 0904.1769.

[31]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[32]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[33]  J. E. Mooij,et al.  Coherent Quantum Dynamics of a Superconducting Flux Qubit , 2003, Science.

[34]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[35]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[36]  A. Wallraff,et al.  Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system , 2008, Nature.

[37]  J J García-Ripoll,et al.  Microwave photon detector in circuit QED. , 2008, Physical review letters.

[38]  J. Martinis,et al.  Superconducting Qubits: A Short Review , 2004, cond-mat/0411174.

[39]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[40]  H. Paul,et al.  Measuring the quantum state of light , 1997 .

[41]  Erik Lucero,et al.  Synthesizing arbitrary quantum states in a superconducting resonator , 2009, Nature.

[42]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[43]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[44]  P. Bertet,et al.  Coherent dynamics of a flux qubit coupled to a harmonic oscillator , 2004, Nature.

[45]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.

[46]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.