Convergence of the Red-TOWER method for removing noise from data

By coupling the wavelet transform with a particular nonlinear shrinking function, the Red-telescopic optimal wavelet estimation of the risk (TOWER) method is introduced for removing noise from signals. It is shown that the method yields convergence of the L/sub 2/ risk to the actual solution with optimal rate. Moreover the method is proved to be asymptotically efficient when the regularization parameter is selected by the generalized cross validation criterion (GCV) or the Mallows criterion. Numerical experiments based on synthetic data are provided to compare the performance of the Red-TOWER method with hard-thresholding, soft-thresholding, and neigh-coeff thresholding. Furthermore, the numerical tests are also performed when the TOWER method is applied to hard-thresholding, soft-thresholding, and neigh-coeff thresholding, for which the full convergence results are still open.

[1]  C. Mallows More comments on C p , 1995 .

[2]  A. Benveniste,et al.  Multiscale system theory , 1990, 29th IEEE Conference on Decision and Control.

[3]  C. L. Mallows Some comments on C_p , 1973 .

[4]  Y. Peng De-noising by modified soft-thresholding , 2000, IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems. (Cat. No.00EX394).

[5]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[6]  Tony Caitcai Minimax Wavelet Estimation Via Block ThresholdingT , 1996 .

[7]  G. Wahba Spline models for observational data , 1990 .

[8]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[9]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[10]  P. Hall,et al.  ON THE MINIMAX OPTIMALITY OF BLOCK THRESHOLDED WAVELET ESTIMATORS , 1999 .

[11]  C. Stein Estimation of the Mean of a Multivariate Normal Distribution , 1981 .

[12]  I. Daubechies,et al.  Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .

[13]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[14]  A. Antoniadis Smoothing Noisy Data with Tapered Coiflets Series , 1996 .

[15]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[16]  Siddhartha R. Dalal,et al.  Some Graphical Aids for Deciding When to Stop Testing Software , 1990, IEEE J. Sel. Areas Commun..

[17]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[18]  T. R. Downie,et al.  The discrete multiple wavelet transform and thresholding methods , 1998, IEEE Trans. Signal Process..

[19]  Dany Leviatan,et al.  Wavelet compression and nonlinearn-widths , 1993, Adv. Comput. Math..

[20]  Ulrich Stadtmüller,et al.  Estimation of Heteroscedasticity in Regression Analysis , 1987 .

[21]  T. Cai Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .

[22]  C. L. Mallows Some Comments onCp , 1973 .

[23]  L. Breiman Better subset regression using the nonnegative garrote , 1995 .

[24]  Adhemar Bultheel,et al.  Generalized cross validation for wavelet thresholding , 1997, Signal Process..

[25]  A. Bruce,et al.  WAVESHRINK WITH FIRM SHRINKAGE , 1997 .

[26]  M. Basseville,et al.  Detection of Abrupt Changes in Signal Processing , 1990 .

[27]  Robert Piessens,et al.  EditionAsymptotic error expansion of waveletapproximations of smooth functions , 1994 .

[28]  V. Rich Personal communication , 1989, Nature.

[29]  Carl Taswell Randomized Signal Classes for Evaluating the Performance of Wavelet Shrinkage Denoising Methods , 1999, SIP.

[30]  I. Johnstone,et al.  Wavelet Threshold Estimators for Data with Correlated Noise , 1997 .

[31]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[32]  Tien D. Bui,et al.  Translation-invariant denoising using multiwavelets , 1998, IEEE Trans. Signal Process..