Stochastic resonance at criticality in a network model of the human cortex

[1]  E. Manjarrez,et al.  Internal stochastic resonance in the coherence between spinal and cortical neuronal ensembles in the cat , 2002, Neuroscience Letters.

[2]  D. Chialvo Emergent complex neural dynamics , 2010, 1010.2530.

[3]  Woodrow L. Shew,et al.  Inhibition causes ceaseless dynamics in networks of excitable nodes. , 2013, Physical review letters.

[4]  P. Landa Mechanism of stochastic resonance , 2004 .

[5]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[6]  Wiesenfeld,et al.  Stochastic resonance on a circle. , 1994, Physical review letters.

[7]  F. Lombardi,et al.  Temporal correlations in neuronal avalanche occurrence , 2016, Scientific Reports.

[8]  J.M.S. Pearce Broca’s Aphasiacs , 2009, European Neurology.

[9]  D. Schacter,et al.  The Brain's Default Network , 2008, Annals of the New York Academy of Sciences.

[10]  R. Shadmehr,et al.  Neural correlates of motor memory consolidation. , 1997, Science.

[11]  Peter J Hellyer,et al.  The Control of Global Brain Dynamics: Opposing Actions of Frontoparietal Control and Default Mode Networks on Attention , 2014, The Journal of Neuroscience.

[12]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[13]  Stefan Everling,et al.  Network Structure Shapes Spontaneous Functional Connectivity Dynamics , 2015, The Journal of Neuroscience.

[14]  Terrence J Sejnowski,et al.  Communication in Neuronal Networks , 2003, Science.

[15]  Dante R. Chialvo Critical brain networks , 2004 .

[16]  D. Thouless Introduction to Phase Transitions and Critical Phenomena , 1972 .

[17]  Frank Huethe,et al.  Improved Sensorimotor Performance via Stochastic Resonance , 2012, The Journal of Neuroscience.

[18]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[19]  Kurt Wiesenfeld,et al.  Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs , 1995, Nature.

[20]  Roy,et al.  Observation of stochastic resonance in a ring laser. , 1988, Physical review letters.

[21]  J. Duyn,et al.  Time-varying functional network information extracted from brief instances of spontaneous brain activity , 2013, Proceedings of the National Academy of Sciences.

[22]  Woodrow L. Shew,et al.  Neuronal Avalanches Imply Maximum Dynamic Range in Cortical Networks at Criticality , 2009, The Journal of Neuroscience.

[23]  L. Cammoun,et al.  The Connectome Mapper: An Open-Source Processing Pipeline to Map Connectomes with MRI , 2012, PloS one.

[24]  Woodrow L. Shew,et al.  The Functional Benefits of Criticality in the Cortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[25]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[26]  O. Sporns,et al.  The economy of brain network organization , 2012, Nature Reviews Neuroscience.

[27]  Karl J. Friston,et al.  The Cortical Dynamics of Intelligible Speech , 2008, The Journal of Neuroscience.

[28]  Pablo Balenzuela,et al.  Criticality in Large-Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis , 2012, Front. Physio..

[29]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[30]  B T Thomas Yeo,et al.  The modular and integrative functional architecture of the human brain , 2015, Proceedings of the National Academy of Sciences.

[31]  John P. Miller,et al.  Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance , 1996, Nature.

[32]  John M Beggs,et al.  Critical branching captures activity in living neural networks and maximizes the number of metastable States. , 2005, Physical review letters.

[33]  Patric Hagmann,et al.  Mapping the human connectome at multiple scales with diffusion spectrum MRI , 2012, Journal of Neuroscience Methods.

[34]  B. Biswal,et al.  Simultaneous assessment of flow and BOLD signals in resting‐state functional connectivity maps , 1997, NMR in biomedicine.

[35]  O. Sporns,et al.  High-cost, high-capacity backbone for global brain communication , 2012, Proceedings of the National Academy of Sciences.

[36]  Andreas Spiegler,et al.  Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain , 2016, eNeuro.

[37]  Jonathan D. Power,et al.  Multi-task connectivity reveals flexible hubs for adaptive task control , 2013, Nature Neuroscience.

[38]  F. Moss,et al.  Non-Dynamical Stochastic Resonance: Theory and Experiments with White and Arbitrarily Coloured Noise , 1995 .

[39]  W. Weaver,et al.  The mathematics of communication. , 1949, Scientific American.

[40]  Rosario N. Mantegna,et al.  Plasticity of brain wave network interactions and evolution across physiologic states , 2015, Front. Neural Circuits.

[41]  Hans J. Herrmann,et al.  Criticality in the brain , 2014 .

[42]  S. Fauve,et al.  Stochastic resonance in a bistable system , 1983 .

[43]  Cedric E. Ginestet,et al.  Cognitive relevance of the community structure of the human brain functional coactivation network , 2013, Proceedings of the National Academy of Sciences.

[44]  Marc-Thorsten Hütt,et al.  Organization of Excitable Dynamics in Hierarchical Biological Networks , 2008, PLoS Comput. Biol..

[45]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[46]  H. Stanley,et al.  Common scale-invariant patterns of sleep-wake transitions across mammalian species. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Dante R Chialvo,et al.  Brain organization into resting state networks emerges at criticality on a model of the human connectome. , 2012, Physical review letters.

[48]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[49]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[50]  Ivanov PCh,et al.  Stochastic feedback and the regulation of biological rhythms. , 1997, Europhysics letters.

[51]  Ditto,et al.  Stochastic Resonance in a Neuronal Network from Mammalian Brain. , 1996, Physical review letters.

[52]  Mark W. Woolrich,et al.  Biophysical network models and the human connectome , 2013, NeuroImage.

[53]  L. Amaral,et al.  Dynamics of sleep-wake transitions during sleep , 2001, cond-mat/0112280.

[54]  Derek Abbott,et al.  What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology , 2009, PLoS Comput. Biol..

[55]  Frank Moss,et al.  Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance , 1993, Nature.

[56]  G. Edelman,et al.  A measure for brain complexity: relating functional segregation and integration in the nervous system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Thomas T. Imhoff,et al.  Noise-enhanced information transmission in rat SA1 cutaneous mechanoreceptors via aperiodic stochastic resonance. , 1996, Journal of neurophysiology.

[58]  Karl J. Friston,et al.  Test-retest reliability of dynamic causal modeling for fMRI , 2015, NeuroImage.

[59]  Olaf Sporns,et al.  Network attributes for segregation and integration in the human brain , 2013, Current Opinion in Neurobiology.

[60]  E. Tagliazucchi The signatures of conscious access and its phenomenology are consistent with large-scale brain communication at criticality , 2017, Consciousness and Cognition.

[61]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[62]  G. Tononi,et al.  Rethinking segregation and integration: contributions of whole-brain modelling , 2015, Nature Reviews Neuroscience.

[63]  Thomas T. Imhoff,et al.  Noise-enhanced tactile sensation , 1996, Nature.

[64]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[65]  Karl J. Friston,et al.  Dynamic Diaschisis: Anatomically Remote and Context-Sensitive Human Brain Lesions , 2001, Journal of Cognitive Neuroscience.

[66]  D. Plenz,et al.  Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. , 2012, Physical review letters.

[67]  Marc-Thorsten Hütt,et al.  Stochastic resonance in discrete excitable dynamics on graphs , 2012 .

[68]  R. Mantegna,et al.  Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  Jessica R. Cohen,et al.  The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition , 2016, The Journal of Neuroscience.

[70]  Mantegna,et al.  Stochastic resonance in a tunnel diode. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  Richard F. Betzel,et al.  Cooperative and Competitive Spreading Dynamics on the Human Connectome , 2015, Neuron.