General approach to blind source separation

This paper identifies and studies two major issues in the blind source separation problem: separability and separation principles. We show that separability is an intrinsic property of the measured signals and can be described by the concept of m-row decomposability introduced in this paper; we also show that separation principles can be developed by using the structure characterization theory of random variables. In particular, we show that these principles can be derived concisely and intuitively by applying the Darmois-Skitovich theorem, which is well known in statistical inference theory and psychology. Some new insights are gained for designing blind source separation filters.

[1]  G. Darmois,et al.  Analyse générale des liaisons stochastiques: etude particulière de l'analyse factorielle linéaire , 1953 .

[2]  R. D. Gitlin,et al.  Fractionally-spaced equalization: An improved digital transversal equalizer , 1981, The Bell System Technical Journal.

[3]  Christian Jutten,et al.  Detection de grandeurs primitives dans un message composite par une architecture de calcul neuromime , 1985 .

[4]  Pierre Comon,et al.  Separation Of Sources Using Higher-Order Cumulants , 1989, Optics & Photonics.

[5]  Jean-Francois Cardoso,et al.  Source separation using higher order moments , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[6]  J. Mendel,et al.  Cumulant based identification of multichannel moving-average models , 1989 .

[7]  Jerry M. Mendel,et al.  ARMA parameter estimation using only output cumulants , 1990, IEEE Trans. Acoust. Speech Signal Process..

[8]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[9]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[10]  J J Hopfield,et al.  Olfactory computation and object perception. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Thomas Kailath,et al.  Direction-of-arrival estimation via exploitation of cyclostationary-a combination of temporal and spatial processing , 1992, IEEE Trans. Signal Process..

[12]  Georgios B. Giannakis,et al.  A unifying maximum-likelihood view of cumulant and polyspectral measures for non-Gaussian signal classification and estimation , 1992, IEEE Trans. Inf. Theory.

[13]  Lang Tong,et al.  Fast blind equalization via antenna arrays , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[14]  Georgios B. Giannakis,et al.  Modeling of non-Gaussian array data using cumulants: DOA estimation of more sources with less sensors , 1993, Signal Process..

[15]  Lang Tong,et al.  Waveform-preserving blind estimation of multiple independent sources , 1993, IEEE Trans. Signal Process..

[16]  Y. F. Huang,et al.  A robust method for wideband signal separation , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[17]  Ananthram Swami,et al.  Multichannel ARMA processes , 1994, IEEE Trans. Signal Process..

[18]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[19]  Xieting Ling,et al.  A neural network for blind signal separation , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.