On the Conditions of Sparse Parameter Estimation via Log-Sum Penalty Regularization

For high-dimensional sparse parameter estimation problems, Log-Sum Penalty (LSP) regularization effectively reduces the sampling sizes in practice. However, it still lacks theoretical analysis to support the experience from previous empirical study. The analysis of this article shows that, like ‘0-regularization, O(s) sampling size is enough for proper LSP, where s is the non-zero components of the true parameter. We also propose an efficient algorithm to solve LSP regularization problem. The solutions given by the proposed algorithm give consistent parameter estimations under less restrictive conditions than‘1-regularization.

[1]  Martin J. Wainwright,et al.  Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.

[2]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[3]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[4]  VershyninRoman,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2009 .

[5]  Emmanuel J. Candès,et al.  A Probabilistic and RIPless Theory of Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[6]  Rémi Gribonval,et al.  Restricted Isometry Constants Where $\ell ^{p}$ Sparse Recovery Can Fail for $0≪ p \leq 1$ , 2009, IEEE Transactions on Information Theory.

[7]  Martin J. Wainwright,et al.  Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.

[8]  Tong Zhang,et al.  Trading Accuracy for Sparsity in Optimization Problems with Sparsity Constraints , 2010, SIAM J. Optim..

[9]  Tong Zhang,et al.  Analysis of Multi-stage Convex Relaxation for Sparse Regularization , 2010, J. Mach. Learn. Res..

[10]  Rick Chartrand,et al.  Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[11]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[12]  Xiaotong Shen,et al.  Journal of the American Statistical Association Likelihood-based Selection and Sharp Parameter Estimation Likelihood-based Selection and Sharp Parameter Estimation , 2022 .

[13]  Changshui Zhang,et al.  High-dimensional Inference via Lipschitz Sparsity-Yielding Regularizers , 2013, AISTATS.

[14]  Armando Manduca,et al.  Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic $\ell_{0}$ -Minimization , 2009, IEEE Transactions on Medical Imaging.

[15]  Restricted Isometry Constants where p sparse , 2011 .

[16]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[17]  Armando Manduca,et al.  Sparse MRI Reconstruction via Multiscale L0-Continuation , 2007, 2007 IEEE/SP 14th Workshop on Statistical Signal Processing.

[18]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[19]  Xiaojun Chen,et al.  Complexity of unconstrained $$L_2-L_p$$ minimization , 2011, Math. Program..

[20]  Yoram Bresler,et al.  Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography , 1998, IEEE Trans. Image Process..

[21]  Jieping Ye,et al.  A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems , 2013, ICML.

[22]  Xiaochuan Pan,et al.  Image reconstruction from few views by non-convex optimization , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[23]  Tong Zhang,et al.  A General Framework of Dual Certificate Analysis for Structured Sparse Recovery Problems , 2012, 1201.3302.

[24]  Rahul Garg,et al.  Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property , 2009, ICML '09.

[25]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[26]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[27]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[28]  Emil Y. Sidky,et al.  Practical iterative image reconstruction in digital breast tomosynthesis by non-convex TpV optimization , 2008, SPIE Medical Imaging.

[29]  Armando Manduca,et al.  A fixed point method for homotopic ℓ0-minimization with application to MR image recovery , 2008, SPIE Medical Imaging.

[30]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[31]  Song Li,et al.  New bounds on the restricted isometry constant δ2k , 2011 .

[32]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[33]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[34]  Jun Zhang,et al.  On Recovery of Sparse Signals via ℓ1 Minimization , 2008, ArXiv.

[35]  J Trzasko,et al.  Nonconvex prior image constrained compressed sensing (NCPICCS): theory and simulations on perfusion CT. , 2011, Medical physics.

[36]  Jun Zhang,et al.  On Recovery of Sparse Signals Via $\ell _{1}$ Minimization , 2008, IEEE Transactions on Information Theory.

[37]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[38]  Lie Wang,et al.  New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.

[39]  Wei Pan,et al.  On constrained and regularized high-dimensional regression , 2013, Annals of the Institute of Statistical Mathematics.

[40]  Xiaochuan Pan,et al.  Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms. , 2009, Medical physics.

[41]  Martin J. Wainwright,et al.  Restricted Eigenvalue Properties for Correlated Gaussian Designs , 2010, J. Mach. Learn. Res..

[42]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[43]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[44]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[45]  Tong Zhang,et al.  A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems , 2011, 1108.4988.

[46]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[47]  Po-Ling Loh,et al.  Regularized M-estimators with nonconvexity: statistical and algorithmic theory for local optima , 2013, J. Mach. Learn. Res..

[48]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[49]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .