Biomimetic intracellular matrix (ICM) materials, properties and functions. Full integration of actuators and sensors.

The electrochemistry of conducting polymers, and other organic compounds, originates biomimetic (intracellular matrix, ICM, reactive gels) materials, properties and devices here reviewed. One reaction changes several properties (multifunctionality): one device can integrate different actuators (artificial muscles, batteries, smart windows) and sensors (temperature, concentration, mechanical). Actuating (current and charge) and sensing (potential) magnitudes are present in the two connecting wires, and can be read by the computer, at any working time mimicking brain-organs dialog. The theoretical description of any multi-functional device envisages intelligent gel robots. The kinetic magnitudes of the reaction become a function of the conformational structure: predictive structural, chemical and biochemical kinetics are emerging.

[1]  T. F. Otero,et al.  Structural and Biomimetic Chemical Kinetics: Kinetic Magnitudes Include Structural Information , 2013 .

[2]  T. F. Otero,et al.  Biomimetic electrochemistry from conducting polymers. A review: Artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces , 2012 .

[3]  T. Otero,et al.  Biomimetic dual sensing-actuators: theoretical description. Sensing electrolyte concentration and driving current. , 2012, The journal of physical chemistry. B.

[4]  Jose G Martinez,et al.  Biomimetic dual sensing-actuators based on conducting polymers. Galvanostatic theoretical model for actuators sensing temperature. , 2012, The journal of physical chemistry. B.

[5]  Frédéric Vidal,et al.  Electropolymerization of 3,4-ethylenedioxythiophene within an insulating nitrile butadiene rubber network: Application to electroreflective surfaces and devices , 2012 .

[6]  T. F. Otero,et al.  Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle , 2011 .

[7]  C. Plesse,et al.  Polyethylene oxide–polytetrahydrofurane–PEDOT conducting interpenetrating polymer networks for high speed actuators , 2011 .

[8]  Toribio F. Otero,et al.  Biomimetic polypyrrole based all three-in-one triple layer sensing actuators exchanging cations , 2011 .

[9]  Zhiyong Fan,et al.  Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers , 2011 .

[10]  Youngkwan Lee,et al.  In situ three-dimensional analysis of the linear actuation of polypyrrole micro-rod actuators using optical microscopy , 2011 .

[11]  Rashi Tiwari,et al.  The state of understanding of ionic polymer metal composite architecture: a review , 2011 .

[12]  I. Hunter,et al.  A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces. , 2011, Macromolecular rapid communications.

[13]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[14]  S. Cosnier,et al.  Electrosynthesized polymers for biosensing. , 2011, Chemical Society reviews.

[15]  K. Mangold,et al.  Electrochemically switchable polypyrrole coated membranes , 2011 .

[16]  T. F. Otero,et al.  Characterization of the movement of polypyrrole–dodecylbenzenesulfonate–perchlorate/tape artificial muscles. Faradaic control of reactive artificial molecular motors and muscles , 2011 .

[17]  Deepshikha,et al.  A Review on Synthesis and Characterization of Nanostructured Conducting Polymers (NSCP) and Application in Biosensors , 2011 .

[18]  J. Arias-Pardilla,et al.  Self-supported semi-interpenetrating polymer networks as reactive ambient sensors , 2011 .

[19]  A. L. Dyer,et al.  Navigating the Color Palette of Solution-Processable Electrochromic Polymers† , 2011 .

[20]  J. Madden,et al.  A Dynamic Electromechanical Model for Electrochemically Driven Conducting Polymer Actuators , 2011, IEEE/ASME Transactions on Mechatronics.

[21]  J. L. Polo,et al.  Bioelectrochemical control of neural cell development on conducting polymers. , 2010, Biomaterials.

[22]  Sanjay Garg,et al.  Evaluation of physical properties and performance over time of an actuating polypyrrole based drug delivery system , 2010 .

[23]  Pierre Gaspard,et al.  From non-covalent assemblies to molecular machines , 2010 .

[24]  W. Walker,et al.  Reduction and oxidation doping kinetics of an electropolymerized donor-acceptor low-bandgap conjugated copolymer. , 2010, The journal of physical chemistry. B.

[25]  O. Inganäs,et al.  Electroactive polymers for neural interfaces , 2010 .

[26]  Seeram Ramakrishna,et al.  Applications of conducting polymers and their issues in biomedical engineering , 2010, Journal of The Royal Society Interface.

[27]  Xin Zhang,et al.  A multilayer bending model for conducting polymer actuators , 2010 .

[28]  Sanjay Garg,et al.  Electrochemically controlled drug delivery based on intrinsically conducting polymers. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[29]  H. Q. A. Lê,et al.  Investigation of SPR and electrochemical detection of antigen with polypyrrole functionalized by biotinylated single-chain antibody: a review. , 2010, Analytica chimica acta.

[30]  F. Vidal,et al.  New Prospects in the Conception of IR Electro-Tunable Devices: The Use of Conducting Semi-Interpenetrating Polymer Network Architecture , 2010 .

[31]  J. Heinze,et al.  Electrochemistry of conducting polymers--persistent models and new concepts. , 2010, Chemical reviews.

[32]  A. Ivaska,et al.  Transport of metal ions across an electrically switchable cation exchange membrane based on polypyrrole doped with a sulfonated calix[6]arene , 2010 .

[33]  Anthony Guiseppi-Elie,et al.  Electroconductive hydrogels: synthesis, characterization and biomedical applications. , 2010, Biomaterials.

[34]  Laura Valero Conzuelo,et al.  Sensing and Tactile Artificial Muscles from Reactive Materials , 2010, Sensors.

[35]  Victor X. D. Yang,et al.  Analytical modeling of a conducting polymer‐driven catheter , 2010 .

[36]  Alvo Aabloo,et al.  Ionic polymer–metal composite mechanoelectrical transduction: review and perspectives , 2010 .

[37]  G. Wallace,et al.  Evaluation of thrust force generated for a robotic fish propelled with polypyrrole actuators , 2010 .

[38]  T. Otero,et al.  Conformational energy from the oxidation kinetics of poly(3,4-ethylenedioxythiophene) films , 2010 .

[39]  T. F. Otero,et al.  Polypyrrole free-standing electrodes sense temperature or current during reaction , 2010 .

[40]  Daryl R. Kipke,et al.  Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. , 2010, Small.

[41]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[42]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[43]  N. Jampana,et al.  Polypyrrole based amperometric glucose biosensors , 2009 .

[44]  M. Ates,et al.  Conducting polymer coated carbon surfaces and biosensor applications , 2009 .

[45]  M. Berggren,et al.  Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. , 2009, Nature materials.

[46]  Gursel Alici,et al.  Finding NEMO (novel electromaterial muscle oscillator): a polypyrrole powered robotic fish with real-time wireless speed and directional control , 2009 .

[47]  G. Alici An effective modelling approach to estimate nonlinear bending behaviour of cantilever type conducting polymer actuators , 2009 .

[48]  N. Munce,et al.  Fabrication and characterization of laser-micromachined polypyrrole-based artificial muscle actuated catheters , 2009 .

[49]  G. Shi,et al.  Conducting polymer nanomaterials: electrosynthesis and applications. , 2009, Chemical Society reviews.

[50]  Gursel Alici,et al.  A bio-inspired robotic locomotion system based on conducting polymer actuators , 2009, 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[51]  Gordon G Wallace,et al.  Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. , 2009, Biomaterials.

[52]  T. Webster,et al.  Nanotechnology and nanomaterials: Promises for improved tissue regeneration , 2009 .

[53]  Toribio F. Otero,et al.  Soft, wet, and reactive polymers. Sensing artificial muscles and conformational energy , 2009 .

[54]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[55]  Hao Jiang,et al.  Bimaterial Microcantilevers as a Hybrid Sensing Platform , 2008 .

[56]  Peter X Ma,et al.  Biomimetic materials for tissue engineering. , 2008, Advanced drug delivery reviews.

[57]  G. Shi,et al.  Polypyrrole Microtubule Actuators for Seizing and Transferring Microparticles , 2007 .

[58]  Christine E. Schmidt,et al.  Conducting polymers in biomedical engineering , 2007 .

[59]  Q. Wahab,et al.  New materials for micro-scale sensors and actuators An engineering review , 2007 .

[60]  G. Alici,et al.  Establishment of a biomimetic device based on tri-layer polymer actuators—propulsion fins , 2007, Bioinspiration & biomimetics.

[61]  Trevor Douglas,et al.  Biological Containers: Protein Cages as Multifunctional Nanoplatforms , 2007 .

[62]  Yang Fang,et al.  A scalable model for trilayer conjugated polymer actuators and its experimental validation , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[63]  Yang Fang,et al.  Robust Adaptive Control of Conjugated Polymer Actuators , 2007, IEEE Transactions on Control Systems Technology.

[64]  Pamela Abshire,et al.  Integrated cell-based sensors and cell clinics utilizing conjugated polymer actuators , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[65]  J. Madden,et al.  Polymer artificial muscles , 2007 .

[66]  Dermot Diamond,et al.  Biomimetic, low power pumps based on soft actuators , 2007 .

[67]  T. F. Otero,et al.  Nitrate and chloride transport through a smart membrane , 2007 .

[68]  H. Gerding,et al.  A new approach towards a minimal invasive retina implant , 2007, Journal of neural engineering.

[69]  Rudolf Kiefer,et al.  Mixed-ion linear actuation behaviour of polypyrrole , 2007 .

[70]  Elisabeth Smela,et al.  Bending Actuators with Maximum Curvature and Force and Zero Interfacial Stress , 2007 .

[71]  Rajesh,et al.  Biomolecular immobilization on conducting polymers for biosensing applications. , 2007, Biomaterials.

[72]  J. Cascales,et al.  Effect of the Doping Ion on the Electrical Response of a Free-Standing Polypyrrole Strip Subjected to Different Preloads: Perspectives and Limitations Associated with the Use of These Devices as Actuators , 2006 .

[73]  M. Berggren,et al.  Electronic modulation of an electrochemically induced wettability gradient to control water movement on a polyaniline surface , 2006 .

[74]  Gursel Alici,et al.  Predicting force output of trilayer polymer actuators , 2006 .

[75]  I. Boyano,et al.  Characterization of polypyrrole degradation by the conformational relaxation model , 2006 .

[76]  Gursel Alici,et al.  A finite element model for bending behaviour of conducting polymer electromechanical actuators , 2006 .

[77]  Elisabeth Smela,et al.  Characterization and modeling of PPy bilayer microactuators Part 1. Curvature , 2006 .

[78]  M Vijayan,et al.  Biosensing and drug delivery by polypyrrole. , 2006, Analytica chimica acta.

[79]  Gursel Alici,et al.  A methodology towards geometry optimization of high performance polypyrrole (PPy) actuators , 2006 .

[80]  Keiichi Kaneto,et al.  Conducting polymer soft actuators based on polypyrrole films—energy conversion efficiency , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[81]  D. Avnir,et al.  Recent bio-applications of sol–gel materials , 2006 .

[82]  David C. Martin,et al.  Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film , 2006, Journal of neural engineering.

[83]  M. Abidian,et al.  Conducting‐Polymer Nanotubes for Controlled Drug Release , 2006, Advanced materials.

[84]  Christopher David Cook,et al.  Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications , 2006 .

[85]  T. Otero,et al.  Polypyrrole artificial muscles: a new rhombic element. Construction and␣electrochemomechanical characterization , 2006 .

[86]  Toribio F. Otero,et al.  Ionic diffusion across oxidized polypyrrole membranes and during oxidation of the free-standing film , 2005 .

[87]  W. Megill,et al.  TITAN: a conducting polymer based microfluidic pump , 2005 .

[88]  Paul M. George,et al.  Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. , 2005, Biomaterials.

[89]  E. Gil,et al.  Stimuli-reponsive polymers and their bioconjugates , 2004 .

[90]  Rachel Z. Pytel,et al.  Artificial muscle technology: physical principles and naval prospects , 2004, IEEE Journal of Oceanic Engineering.

[91]  I. Boyano,et al.  Nucleation, non-stoiquiometry and sensing muscles from conducting polymers , 2004 .

[92]  Guillermo C. Bazan,et al.  Homogeneous Fluorescence-Based DNA Detection with Water-Soluble Conjugated Polymers , 2004 .

[93]  Himadri S. Gupta,et al.  Structure and mechanical quality of the collagen–mineral nano-composite in bone , 2004 .

[94]  Wen Lu,et al.  Strain and energy efficiency of polyaniline fiber electrochemical actuators in aqueous electrolytes. , 2004, The journal of physical chemistry. B.

[95]  M. Berggren,et al.  A Solid‐State Organic Electronic Wettability Switch , 2004 .

[96]  T F Otero,et al.  Artificial muscle: movement and position control. , 2004, Chemical communications.

[97]  Toribio Fernández Otero,et al.  3D mechanical characterization of artificial muscles with stereoscopic computer vision and active contours , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[98]  T. F. Otero,et al.  A sensing muscle , 2003 .

[99]  Antonios G Mikos,et al.  Biomimetic materials for tissue engineering. , 2003, Biomaterials.

[100]  José-María Sansiñena,et al.  High‐Performance, Monolithic Polyaniline Electrochemical Actuators , 2003 .

[101]  I. Boyano,et al.  Nucleation and nonstoichiometry in electrochromic conducting polymers. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[102]  Binbin Xi,et al.  Electroactive polymer actuator devices (EAPAD) , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[103]  E. Smela Conjugated Polymer Actuators for Biomedical Applications , 2003 .

[104]  Peter Sommer-Larsen,et al.  A Conducting Polymer Artificial Muscle with 12 % Linear Strain , 2003 .

[105]  María Teresa Cortés,et al.  Artificial Muscles with Tactile Sensitivity , 2003 .

[106]  Ingemar Lundström,et al.  The Cell Clinic: Closable Microvials for Single Cell Studies , 2002 .

[107]  G. Wallace,et al.  Strain Response from Polypyrrole Actuators under Load , 2002 .

[108]  Nikolaj Gadegaard,et al.  Volume Change in Polypyrrole Studied by Atomic Force Microscopy , 2001 .

[109]  A. Hamilton,et al.  At the Interface of Organic and Inorganic Chemistry: Bioinspired Synthesis of Composite Materials , 2001 .

[110]  E. Smela,et al.  Microfabricating conjugated polymer actuators. , 2000, Science.

[111]  J. Lukkari,et al.  n- and p-Doped Poly(3,4-ethylenedioxythiophene): Two Electronically Conducting States of the Polymer , 2000 .

[112]  N. S. Ferriols,et al.  Application of a distributed impedance model in the analysis of conducting polymer films , 2000 .

[113]  I. Lundström,et al.  Microrobots for micrometer-size objects in aqueous media: potential tools for single-cell manipulation. , 2000, Science.

[114]  Toribio F. Otero,et al.  Electrochemical characterization and control of triple-layer muscles , 2000, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[115]  G. Paasch The transmission line equivalent circuit model in solid-state electrochemistry , 2000 .

[116]  Elisabeth Smela,et al.  A Microfabricated Movable Electrochromic “Pixel” Based on Polypyrrole , 1999 .

[117]  Elisabeth Smela,et al.  Surprising Volume Change in PPy(DBS): An Atomic Force Microscopy Study , 1999 .

[118]  Ingemar Lundström,et al.  Polypyrrole micro actuators , 1999 .

[119]  G. Wallace,et al.  Development of membrane systems based on conducting polymers , 1999 .

[120]  M. Bengoechea,et al.  UV−Visible Spectroelectrochemistry of Conducting Polymers. Energy Linked to Conformational Changes , 1999 .

[121]  Danilo De Rossi,et al.  Actuative properties of polyaniline fibers under electrochemical stimulation , 1998 .

[122]  T F Otero,et al.  Soft and wet conducting polymers for artificial muscles. , 1998, Advanced materials.

[123]  Elisabeth Smela,et al.  A General‐Purpose Conjugated‐Polymer Device Array for Imaging , 1998 .

[124]  R Langer,et al.  Stimulation of neurite outgrowth using an electrically conducting polymer. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[125]  T. F. Otero,et al.  Bilayer dimensions and movement in artificial muscles , 1997 .

[126]  P. Pickup,et al.  An impedance study of electron transport and electron transfer in composite polypyrrole + polystyrenesulphonate films , 1997 .

[127]  D. De Rossi,et al.  Steerable Microcatheters Actuated by Embedded Conducting Polymer Structures , 1996 .

[128]  T. F. Otero,et al.  Artificial muscles based on conducting polymers , 1995 .

[129]  M. Catellani,et al.  N- and P-doped Polydithieno[3,4-B:3′,4′-D] thiophene: A narrow band gap polymer for redox supercapacitors , 1995 .

[130]  Qibing Pei,et al.  Electrochemical Muscles : Micromachining Fingers and Corkscrews , 1993 .

[131]  Qibing Pei,et al.  Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole , 1993 .

[132]  Q. Pei,et al.  Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox , 1992 .

[133]  R. Murray,et al.  Faster ion gate membranes , 1983 .

[134]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[135]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[136]  Fred Wudl,et al.  The world of smart healable materials , 2010 .

[137]  Zhixiang Wei,et al.  Conducting polymer nanostructures and their application in biosensors. , 2010, Journal of colloid and interface science.

[138]  Nigel H Lovell,et al.  Impact of co-incorporating laminin peptide dopants and neurotrophic growth factors on conducting polymer properties. , 2010, Acta biomaterialia.

[139]  Geoffrey M. Spinks,et al.  Conductive Electroactive Polymers: Intelligent Polymer Systems , 2009 .

[140]  Toribio F. Otero,et al.  Mechanical characterization of free-standing polypyrrole film , 2007 .

[141]  Achim Goepferich,et al.  Rational design of hydrogels for tissue engineering: impact of physical factors on cell behavior. , 2007, Biomaterials.

[142]  Ingemar Lundström,et al.  Perpendicular Actuation with Individually Controlled Polymer Microactuators , 2001 .

[143]  M. Leclerc,et al.  OPTICAL AND ELECTRICAL PROPERTIES OF FLUORENE-BASED PI -CONJUGATED POLYMERS , 1998 .

[144]  A. Mount,et al.  APPLICATION OF A TRANSMISSION-LINE MODEL TO IMPEDANCE STUDIES ON A POLY(VINYLFERROCENE)-MODIFIED ELECTRODE , 1993 .

[145]  J. Rodríguez,et al.  Electrochemomechanical and Electrochemopositioning Devices: Artificial Muscles , 1993 .

[146]  Jean-Luc Brédas,et al.  Quantum Chemistry Aided Design of Organic Polymers: An Introduction to the Quantum Chemistry of Polymers and Its Applications , 1991 .

[147]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[148]  R. Murray,et al.  Ion gate electrodes. Polypyrrole as a switchable ion conductor membrane , 1984 .