Fluorescence Quantum Yields: Methods of Determination and Standards

The fluorescence quantum yield Φ f is a key property that characterizes the ability of a fluorophore to convert absorbed photons into emitted photons under various environmental conditions. Knowledge of it is important for the successful development of fluorometric indication and visualization methods and for the understanding of light-driven processes in the natural sciences. Φ f is a molecule- or material-related parameter and can thus significantly differ from the fraction of absorbed photons that are actually measured as the fluorescence signal of a certain sample, e.g., when the signal is modulated by reabsorption, self-quenching or polarization effects. The determination of Φ f can be performed in absolute measurements or relative to a fluorescent standard material with a known Φ f by optical or calorimetric methods. Here the different procedures and techniques are described and compared, and the suitability of a representative number of dyes that have been proposed as fluorescence reference materials in the past 25 years is discussed. Besides addressing specific issues such as low-temperature measurements and the appropriate choice of standards and measurement conditions, we conclude with recommendations for better standardization and quality management in this area.

[1]  C. Bindhu,et al.  Effect of the Excitation Source on the Quantum-Yield Measurements of Rhodamine B Laser Dye Studied Using Thermal-Lens Technique , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[2]  L. Johansson,et al.  Photophysics, molecular reorientation in solution and X-ray structure of a new fluorescent probe, 1,7-diazaperylene , 1993 .

[3]  I. B. Berlman Handbook of flourescence spectra of aromatic molecules , 1971 .

[4]  D. McClure,et al.  Errata: Absolute Quantum Efficiencies of Luminescence of Organic Molecules in Solid Solution , 1952 .

[5]  G. Weber,et al.  Fluorescence excitation spectrum of organic compounds in solution. Part 1.—Systems with quantum yield independent of the exciting wavelength , 1958 .

[6]  Quincy L. Mattingly,et al.  Steady-state and picosecond laser fluorescence studies of nonradiative pathways in tricarbocyanine dyes Implications to the design of near-IR fluorochromes with high fluorescence efficiencies , 1994 .

[7]  A. Fletcher,et al.  Fluorescence quantum yields of some rhodamine dyes , 1982 .

[8]  M. Mycek,et al.  Handbook of Biomedical Fluorescence , 2003 .

[9]  Douglas Magde,et al.  Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields¶ , 2002, Photochemistry and photobiology.

[10]  Raymond F. Chen,et al.  Measurements of Absolute Values in Biochemical Fluorescence Spectroscopy. , 1972, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[11]  Volkhard May,et al.  Charge and Energy Transfer Dynamics in Molecular Systems: A Theoretical Introduction , 2000 .

[12]  A. Tsin,et al.  The fluorescence quantum yield of vitamin A2. , 1988, Life sciences.

[13]  J. B. Birks,et al.  Photophysics of aromatic molecules , 1970 .

[14]  David Phillips,et al.  Photophysics of some common fluorescence standards , 1983 .

[15]  W. Melhuish,et al.  QUANTUM EFFICIENCIES OF FLUORESCENCE OF ORGANIC SUBSTANCES: EFFECT OF SOLVENT AND CONCENTRATION OF THE FLUORESCENT SOLUTE1 , 1961 .

[16]  M. Rockley,et al.  Absolute fluorescence quantum yields by relative fluorescence and photoacoustic measurements of low level luminescence quenching , 1987 .

[17]  F. Wilkinson,et al.  Photochemistry on surfaces: fluorescence emission quantum yield evaluation of dyes adsorbed on microcrystalline cellulose , 1992 .

[18]  P. Holloway,et al.  Role of the surface in luminescent processes. , 2004, Chemical reviews.

[19]  R. Martin,et al.  Lanthanide probes in biological systems: characterization of luminescence excitation spectra of terbium complexes with proteins. , 1981, Biophysical chemistry.

[20]  M. Lagorio,et al.  Photophysics on surfaces: determination of absolute fluorescence quantum yields from reflectance spectra. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[21]  U. Resch-Genger,et al.  Traceability in Fluorometry—Part I: Physical Standards , 2005, Journal of Fluorescence.

[22]  M. Maroncelli,et al.  Set of Secondary Emission Standards for Calibration of the Spectral Responsivity in Emission Spectroscopy , 1998 .

[23]  R. J. Hurtubise,et al.  Solid‐Phase Room‐Temperature Phosphorescence , 2005 .

[24]  H. Tønnesen,et al.  Corrected Emission Spectra and Quantum Yields for a Series of Fluorescent Compounds in the Visible Spectral Region , 2004, Journal of Fluorescence.

[25]  U. Resch-Genger,et al.  How to Improve Quality Assurance in Fluorometry: Fluorescence-Inherent Sources of Error and Suited Fluorescence Standards , 2005, Journal of Fluorescence.

[26]  E. Kurian,et al.  Photoacoustic analysis of proteins: volumetric signals and fluorescence quantum yields. , 1997, Biophysical journal.

[27]  S. Kalinin,et al.  A new and versatile fluorescence standard for quantum yield determination , 2001 .

[28]  A. Bard,et al.  Electrogenerated chemiluminescence. 35. Temperature dependence of the ECL efficiency of tris(2,2'-bipyridine)rubidium(2+) in acetonitrile and evidence for very high excited state yields from electron transfer reactions , 1979 .

[29]  The luminescent quantum efficiency of Cr3+ ions in co-doped crystals of LiNbO3 : ZnO determined by simultaneous multiple-wavelength photoacoustic and luminescence experiments , 2001 .

[30]  W. Rettig,et al.  Efficient intramolecular fluorescence quenching in triphenylmethane-dyes involving excited states with charge separation and twisted conformations. , 1985 .

[31]  Laurent Porrès,et al.  Absolute Measurements of Photoluminescence Quantum Yields of Solutions Using an Integrating Sphere , 2006, Journal of Fluorescence.

[32]  F. Schäfer,et al.  Dye lasers , 1973 .

[33]  K. Ghiggino,et al.  β-Carboline as a fluorescence standard , 1985 .

[34]  J. B. Birks,et al.  Fluorescence Quantum Yield Measurements* , 1976, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[35]  R. Velapoldi Considerations on Organic Compounds in Solution and Inorganic Ions in Glasses as Fluorescent Standard Reference Materials. , 1972, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[36]  C. J. Lewis,et al.  Cyanine dye labeling reagents: sulfoindocyanine succinimidyl esters. , 1993, Bioconjugate chemistry.

[37]  A. C. Testa,et al.  2-Aminopyridine as a standard for low-wavelength spectrofluorimetry , 1968 .

[38]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[39]  J. Demas,et al.  Measurement of photoluminescence quantum yields. Review , 1971 .

[40]  Andrew P. Monkman,et al.  Measurements of Solid‐State Photoluminescence Quantum Yields of Films Using a Fluorimeter , 2002 .

[41]  C. Bertozzi,et al.  Fluorescence probes in biochemistry: an examination of the non-fluorescent behavior of dansylamide by photoacoustic calorimetry. , 1992, Analytical biochemistry.

[42]  Colin F. Poole,et al.  Encyclopedia of analytical science , 1995 .

[43]  Elif Arslan,et al.  SYNTHESIS AND SPECTROSCOPIC PROPERTIES OF HIGHLY PURE PERYLENE FLUORESCENT DYES , 2001 .

[44]  Zhang Guang-yin,et al.  Determination of the absolute fluorescence quantum yields of laser dyes using photoacoustic spectroscopy , 1986 .

[45]  H. Kong,et al.  Rapid absolute diffuse spectral reflectance factor measurements using a silicon‐photodiode array , 1997 .

[46]  Steven L. Murov,et al.  Handbook of photochemistry , 1973 .

[47]  D. Magde,et al.  Absolute luminescence yield of cresyl violet. A standard for the red , 1979 .

[48]  V. P. N. Nampoori,et al.  Solvent Effect on Absolute Fluorescence Quantum Yield of Rhodamine 6G Determined Using Transient Thermal Lens Technique , 1999 .

[49]  Ute Resch-Genger,et al.  Linking fluorescence measurements to radiometric units , 2006 .

[50]  S. Braslavsky Glossary of terms used in photochemistry, 3rd edition (IUPAC Recommendations 2006) , 2007 .

[51]  J. Lindsey,et al.  PhotochemCAD ‡ : A Computer‐Aided Design and Research Tool in Photochemistry , 1998 .

[52]  R. Cundall,et al.  A fully compensated versatile spectrofluorimeter. , 1968, Journal of scientific instruments.

[53]  V. Nampoori,et al.  Fluorescence quantum yield of rhodamine 6G using pulsed photoacoustic technique , 1990 .

[54]  J. Eastman,et al.  QUANTITATIVE SPECTROFLUORIMETRY‐THE FLUORESCENCE QUANTUM YIELD OF QUININE SULFATE , 1967 .

[55]  P. Prosposito,et al.  Fluorescence efficiency of four infrared polymethine dyes , 2003 .

[56]  A. Fletcher QUININE SULFATE AS A FLUORESCENCE QUANTUM YIELD STANDARD , 1969, Photochemistry and photobiology.

[57]  K. Kobs,et al.  Rhodamine B and rhodamine 101 as reference substances for fluorescence quantum yield measurements , 1980 .

[58]  H. Schmidtke,et al.  On the use of the thermal lens effect for measuring absolute luminescence quantum yields of transition metal complexes , 1992 .

[59]  J. Jortner,et al.  Absolute fluorescence quantum yields of large molecules in supersonic expansions , 1984 .

[60]  Suzanne Fery-Forgues,et al.  ARE FLUORESCENCE QUANTUM YIELDS SO TRICKY TO MEASURE? A DEMONSTRATION USING FAMILIAR STATIONERY PRODUCTS , 1999 .

[61]  V. Balzani Electron transfer in chemistry , 2001 .

[62]  A. Fletcher Fluorescence emission band shift with wavelength of excitation , 1968 .

[63]  F. Hirayama,et al.  Actinometric determination of absolute fluorescence quantum yields , 1983 .

[64]  Richard H. Friend,et al.  An improved experimental determination of external photoluminescence quantum efficiency , 1997 .

[65]  K. Leo,et al.  A simple measurement of the absolute internal quantum efficiency of thin organic films , 2000 .

[66]  J. Callis,et al.  CALORIMETRIC, PHOTOMETRIC AND LIFETIME DETERMINATIONS OF FLUORESCENCE YIELDS OF FLUORESCEIN DYES * , 1969, Photochemistry and photobiology.

[67]  P. D. Swift,et al.  Maximising the light output of a Luminescent Solar Concentrator , 2004 .

[68]  P. Luisi,et al.  Correction for Inner Filter Effects in Fluorescence Spectroscopy , 1983 .

[69]  I. Samuel,et al.  The solid-state photoluminescent quantum yield of triboluminescent materials , 2001 .

[70]  John Olmsted,et al.  Calorimetric determination of the 9,10-diphenyl-anthracene fluorescence quantum yield , 1977 .

[71]  Raymond F. Chen Fluorescence Quantum Yields of Tryptophan and Tyrosine , 1967 .

[72]  A. R. Williams,et al.  Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer , 1983 .

[73]  S. Icli,et al.  A Thermal and Photostable Reference Probe for Qf Measurements: Chloroform Soluble Perylene 3,4,9,10-Tetracarboxylic Acid-bis-N, N-Dodecyl Diimide , 1996 .

[74]  J. Olmsted Calorimetric determinations of absolute fluorescence quantum yields , 1979 .

[75]  E. J. Bowen,et al.  The Effect of Temperature on Fluorescence of Solutions , 1959 .

[76]  Charles D. Merritt,et al.  Photoluminescence quantum yield of pure and molecularly doped organic solid films , 1999 .

[77]  M. Levitus,et al.  Fluorescence anisotropy of dyes included in crosslinked polystyrene , 1999 .

[78]  U. Resch-Genger,et al.  The Calibration Kit Spectral Fluorescence Standards—A Simple and Certified Tool for the Standardization of the Spectral Characteristics of Fluorescence Instruments , 2006, Journal of Fluorescence.

[79]  W. Seelert,et al.  Photocaloric spectroscopy of the excited state absorption and of the fluorescence quantum efficiency in fluorescent material , 1987 .

[80]  Alberto Credi,et al.  From observed to corrected luminescence intensity of solution systems: an easy-to-apply correction method for standard spectrofluorimeters , 1998 .

[81]  Heinz Langhals,et al.  Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields , 1998 .

[82]  Martin Klessinger,et al.  Excited states and photochemistry of organic molecules , 1995 .

[83]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[84]  J. Lee Bacterial bioluminescence. Quantum yields and stoichiometry of the reactants reduced flavin mononucleotide, dodecanal, and oxygen, and of a product hydrogen peroxide. , 1972, Biochemistry.

[85]  R. Velapoldi Liquid Standards in Fluorescence Spectrometry , 1987 .

[86]  T. F. Hunter,et al.  Absolute fluorescence quantum yields for vapour-phase benzene and naphthalene, and comments on the non-radiative processes , 1976 .

[87]  P. Hébert,et al.  Photochemistry of an unsymmetrical polymethine-cyanine dye; solute—solvent interactions and relaxation dynamics of LDS 751 , 1994 .

[88]  D. F. Eaton International Union of Pure and Applied Chemistry Organic Chemistry Division Commission on Photochemistry. Reference materials for fluorescence measurement. , 1988, Journal of photochemistry and photobiology. B, Biology.

[89]  J. W. Hastings,et al.  THE PURIFICATION PROPERTIES, AND CHEMILUMINESCENT QUANTUM YIELD OF BACTERIAL LUCIFERASE. , 1965, The Journal of biological chemistry.

[90]  H. Perkampus,et al.  Bestimmung absoluter Fluorescenzquantenausbeuten mittels der Photo-Akustik-Spektroskopie , 1983 .

[91]  K. Drexhage Fluorescence Efficiency of Laser Dyes* , 1976, Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry.

[92]  M. J. Adams,et al.  Determination of absolute fluorescence quantum efficiency of quinine bisulfate in aqueous medium by optoacoustic spectrometry , 1977 .

[93]  J. Eisinger,et al.  Front-face fluorometry of liquid samples. , 1979, Analytical biochemistry.

[94]  Maurice W. Windsor,et al.  Fluorescence yields of aromatic compounds , 1968 .

[95]  G. Weber,et al.  Determination of the absolute quantum yield of fluorescent solutions , 1957 .

[96]  J. Callis The Calorimetric Detection of Excited States* , 1976, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[97]  N. Tamai,et al.  Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. , 2007, Analytical chemistry.

[98]  J. Morris,et al.  Fluorescence quantum yield determinations. 9,10-Diphenylanthracene as a reference standard in different solvents , 1976 .

[99]  A. Waggoner,et al.  Cyanine dye labeling reagents for sulfhydryl groups. , 1989, Cytometry.

[100]  N. Arnaud,et al.  Limitations Arising from Optical Saturation in Fluorescence and Thermal Lens Spectrometries Using Pulsed Laser Excitation: Application to the Determination of the Fluorescence Quantum Yield of Rhodamine 6G , 1996 .

[101]  Govindjee,et al.  Thermoluminescence from the photosynthetic apparatus , 1996, Photosynthesis Research.

[102]  A. Craig,et al.  Predicted observable fluorescent lifetimes of several cyanines , 1974 .

[103]  J. Eastman The dependence of fluorescence on solvent and temperature , 1970 .

[104]  M. Rockley,et al.  The photoacoustic determination of fluorescence yields of dye solutions , 1978 .

[105]  D. F. Eaton,et al.  International Union of Pure and Applied Chemistry Organic Chemistry Division Commission on Photochemistry. Reference materials for fluorescence measurement. , 1988, Journal of photochemistry and photobiology. B, Biology.

[106]  W. Melhuish,et al.  Measurement of Quantum Efficiencies of Fluorescence and Phosphorescence and Some Suggested Luminescence Standards , 1964 .

[107]  K. Mielenz,et al.  Polarization Effects on Fluorescence Measurements. , 1975, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[108]  Effect of polarization and geometric factors on quantitative laser-induced fluorescence- to-Raman intensity ratios of water samples and a new calibration technique , 2003 .

[109]  R. F. Chen,et al.  Some characteristics of the fluorescence of quinine. , 1967, Analytical biochemistry.

[110]  E. C. Lim,et al.  Quantitative Study of Luminescence in Aromatic and Heteroaromatic Molecules , 1972 .

[111]  A. Bril',et al.  Some Methods of Luminescence Efficiency Measurements* , 1976, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[112]  J. Callis,et al.  Absolute Quantum Efficiencies. , 1972, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[113]  R. C. Benson,et al.  Absorption and fluorescence properties of cyanine dyes , 1977 .

[114]  S. Schulman,et al.  Determination of Fluorescence Efficiencies of Fluorophores in Highly Absorbing Solutions Using Right Angle Geometry , 1986 .

[115]  R. Austin,et al.  Low-temperature spectroscopy. , 1995, Methods in enzymology.

[116]  C. A. Parker,et al.  Correction of fluorescence spectra and measurement of fluorescence quantum efficiency , 1960 .

[117]  V. Fadeev,et al.  Determination of Fluorescence Quantum Yields Using a Spontaneous Raman Scattering Line of the Solvent as Internal Standard , 1982 .

[118]  R. M. Threatte,et al.  Fluorescence of 6-methoxyquinoline, quinine, and quinidine in aqueous media. , 1974, Journal of pharmaceutical sciences.

[119]  K. Rurack,et al.  Traceability in Fluorometry: Part II. Spectral Fluorescence Standards , 2005, Journal of Fluorescence.

[120]  O. Wolfbeis,et al.  Syntheses of fluorescent dyes. XIV. Standards for fluorescence measurements in the near neutral pH-range† , 1982 .

[121]  Joseph Georges,et al.  FLUORESCENCE QUANTUM YIELD OF RHODAMINE 6G IN ETHANOL AS A FUNCTION OF CONCENTRATION USING THERMAL LENS SPECTROMETRY , 1996 .

[122]  A. C. Testa,et al.  Comparison of quinine bisulfate and 9,10-diphenylanthracene as fluorescence standards , 1968 .

[123]  R. Watts,et al.  Effect of ligand and solvent deuteration on the excited state properties of the tris(2,2'-bipyridyl)ruthenium(II) ion in aqueous solution. Evidence for electron transfer to solvent , 1975 .

[124]  L. Harrah,et al.  Determination of quantum yields of fluorescence by optimizing the fluorescence intensity , 1983 .

[125]  Lloyd M. Davis,et al.  THE PHOTOPHYSICAL CONSTANTS OF SEVERAL FLUORESCENT DYES PERTAINING TO ULTRASENSITIVE FLUORESCENCE SPECTROSCOPY , 1993 .

[126]  V. P. N. Nampoori,et al.  Measurement of the absolute fluorescence quantum yield of rhodamine B solution using a dual-beam thermal lens technique , 1996 .

[127]  R. Reisfeld Inorganic Ions in Glasses and Polycrystalline Pellets as Fluorescence Standard Reference Materials. , 1972, Journal of Research of the National Bureau of Standards Section A Physics and Chemistry.

[128]  D. Barrow,et al.  Quinine as a fluorescence lifetime standard: Conditions for effectively homogeneous decay , 1984 .

[129]  J. Poyato,et al.  Some β-carboline derivatives as fluorescence standards , 1992 .

[130]  K. Suslick,et al.  The energy efficiency of formation of photons, radicals and ions during single-bubble cavitation , 2002, Nature.

[131]  S. J. Wawilow,et al.  Die Fluoreszenzausbeute von Farbstofflösungen , 1924 .

[132]  J. Spaulding,et al.  Liquid Scintillation Counting and Organic Scintillators , 1991 .

[133]  G. Heinrich,et al.  9,10-diphenylanthracene as a fluorescence quantum yield standard , 1974 .

[134]  A. Tokmakoff,et al.  Temperature-dependent absolute fluorescence quantum yield of C60 multilayers , 1993 .

[135]  D. Hercules,et al.  Colloidal Silica as a Standard for Measuring Absolute Fluorescence Yield , 1960, Science.

[136]  James E. Martin,et al.  Measuring the absolute quantum efficiency of luminescent materials , 2005 .

[137]  Ifor D. W. Samuel,et al.  Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers , 1995 .