Analysis of stochastic matching markets

Suppose that the agents of a matching market contact each other randomly and form new pairs if is in their interest. Does such a process always converge to a stable matching if one exists? If so, how quickly? Are some stable matchings more likely to be obtained by this process than others? In this paper we are going to provide answers to these and similar questions, posed by economists and computer scientists. In the first part of the paper we give an alternative proof for the theorems by Diamantoudi et al. and Inarra et al., which imply that the corresponding stochastic processes are absorbing Markov chains. The second part of the paper proposes new techniques to analyse the behaviour of matching markets. We introduce the Stable Marriage and Stable Roommates Automaton and show how the probabilistic model checking tool PRISM may be used to predict the outcomes of stochastic interactions between myopic agents. In particular, we demonstrate how one can calculate the probabilities of reaching different matchings in a decentralised market and determine the expected convergence time of the stochastic process concerned. We illustrate the usage of this technique by studying some well-known marriage and roommates instances and randomly generated instances.

[1]  Petr A. Golovach,et al.  Solutions for the stable roommates problem with payments , 2012, Theor. Comput. Sci..

[2]  Dóra Balog,et al.  Capital allocation in financial institutions: the Euler method , 2011 .

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  Bettina Klaus,et al.  Corrigendum to “On randomized matching mechanisms” [Economic Theory 8(1996)377–381] , 2007 .

[5]  D. Dolinoy,et al.  Timing is everything , 2011, Epigenetics.

[6]  Harry R. Lewis,et al.  Review of "Mariages stables et leur relations avec d'autre problèmes combinatoires: introduction à l'analyze mathématique des algorithmes" by Donald E. Knuth. Les Presses de l'Université de Montréal. , 1978, SIGA.

[7]  Akihisa Tamura,et al.  Transformation from Arbitrary Matchings to Stable Matchings , 1993, J. Comb. Theory, Ser. A.

[8]  Jimmy J. M. Tan A Necessary and Sufficient Condition for the Existence of a Complete Stable Matching , 1991, J. Algorithms.

[9]  S. Fujishige,et al.  Decentralized Market Processes to Stable Job Matchings with Competitive Salaries , 2010 .

[10]  Sergei Vassilvitskii,et al.  Social Networks and Stable Matchings in the Job Market , 2009, WINE.

[11]  Róbert F. Veszteg,et al.  Decentralized matching markets : a laboratory experiment , 2012 .

[12]  Tamás Fleiner,et al.  Fractional Solutions for NTU-Games , 2010 .

[13]  Uriel G. Rothblum,et al.  "Timing Is Everything" and Marital Bliss , 2002, J. Econ. Theory.

[14]  Martin Hoefer,et al.  Local matching dynamics in social networks , 2011, Inf. Comput..

[15]  Aron Kiss Minimum taxes and repeated tax competition , 2012 .

[16]  L. K. Aszl´o´a,et al.  THE CORE CAN BE ACCESSED WITH A BOUNDED NUMBER OF BLOCKS , 2005 .

[17]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[18]  James W. Boudreau Preference Structure and Random Paths to Stability in Matching Markets , 2008 .

[19]  Flip Klijn,et al.  Matching with couples: a Multidisciplinary Survey , 2013, IGTR.

[20]  Marta Z. Kwiatkowska,et al.  Probabilistic symbolic model checking with PRISM: a hybrid approach , 2004, International Journal on Software Tools for Technology Transfer.

[21]  Vahab S. Mirrokni,et al.  Uncoordinated two-sided matching markets , 2009, SECO.

[22]  László Á. Kóczy,et al.  The core can be accessed with a bounded number of blocks , 2005 .

[23]  Matthew O. Jackson,et al.  The Evolution of Social and Economic Networks , 2002, J. Econ. Theory.

[24]  Dávid Csercsik,et al.  Externalities in the games over electrical power transmission networks , 2011 .

[25]  Yi-You Yang,et al.  Accessible outcomes versus absorbing outcomes , 2011, Math. Soc. Sci..

[26]  Robert W. Irving,et al.  The Stable marriage problem - structure and algorithms , 1989, Foundations of computing series.

[27]  Jimmy J. M. Tan,et al.  A Generalization of the Stable Matching Problem , 1995, Discret. Appl. Math..

[28]  Maria Csanadi,et al.  Adaptation pressures during global decline on system transformation and its spatial consequences in China , 2011 .

[29]  M. Utku Ünver,et al.  Random paths to pairwise stability in many-to-many matching problems: a study on market equilibration , 2006, Int. J. Game Theory.

[30]  Alvin E. Roth,et al.  Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis , 1990 .

[31]  Eiichi Miyagawa,et al.  Random paths to stability in the roommate problem , 2004, Games Econ. Behav..

[32]  Elena Molis,et al.  Random paths to P-stability in the roommate problem , 2008, Int. J. Game Theory.

[33]  Matthew O. Jackson,et al.  The Stability of Hedonic Coalition Structures , 2002, Games Econ. Behav..

[34]  Dániel Horn,et al.  How are inequality of opportunity and mean student performance related? A quantile regression approach using PISA data , 2011 .

[35]  Daniël Paulusma,et al.  Computing solutions for matching games , 2011, International Journal of Game Theory.

[36]  Tamás Fleiner,et al.  The dynamics of stable matchings and half-matchings for the stable marriage and roommates problems , 2008, Int. J. Game Theory.

[37]  Tayfun Sönmez,et al.  Core in a simple coalition formation game , 2001, Soc. Choice Welf..

[38]  Sylvain Béal,et al.  On the number of blocks required to access the coalition structure core , 2011 .

[39]  Miklós Koren,et al.  Machines and Machinists: Capital-Skill Complementarity from an International Trade Perspective , 2011 .

[40]  James W. Boudreau A note on the efficiency and fairness of decentralized matching , 2011, Oper. Res. Lett..

[41]  David Anthony Parker,et al.  Implementation of symbolic model checking for probabilistic systems , 2003 .

[42]  Tamás Fleiner,et al.  On a lemma of Scarf , 2002, J. Comb. Theory, Ser. B.

[43]  Bettina Klaus,et al.  Stochastic stability for roommate markets , 2010, J. Econ. Theory.

[44]  U. Rothblum,et al.  Vacancy Chains and Equilibration in Senior-Level Labor Markets , 1997 .

[45]  F. Mathieu Acyclic Preference-Based Systems , 2010 .

[46]  B. Nordstrom FINITE MARKOV CHAINS , 2005 .

[47]  Leeat Yariv,et al.  An Experimental Study of Decentralized Matching , 2012 .

[48]  András Simonovits,et al.  The Mandatory Private Pension Pillar in Hungary: An Obituary , 2011 .

[49]  Gergely Csorba,et al.  Separating the ex post effects of mergers: an analysis of structural changes on the Hungarian retail gasoline market , 2011 .

[50]  Elena Molis,et al.  The stability of the roommate problem revisited , 2010 .

[51]  H. Scarf The Core of an N Person Game , 1967 .

[52]  Maria Csanadi,et al.  Varieties of System Transformations and Their Structural Background Based on the IPS Model , 2011 .

[53]  P. Jean-Jacques Herings,et al.  Core Concepts for Incomplete Market Economies , 2011 .

[54]  Jean Pisani-Ferry,et al.  A comprehensive approach to the Euro-area debt crisis: background calculations. Bruegel Working Paper 2011/05, February 2011 , 2011 .

[55]  Laurent Viennot,et al.  On Using Matching Theory to Understand P2P Network Design , 2006, ArXiv.

[56]  John G. Kemeny,et al.  Finite Markov Chains. , 1960 .

[57]  Jing Dang,et al.  Real Business Cycles with a Human Capital Investment Sector and Endogenous Growth: Persistence, Volatility and Labor Puzzles , 2011 .

[58]  Tamás Fleiner,et al.  Notes on the Bankruptcy Problem: an Application of Hydraulic Rationing , 2011 .

[59]  A. Roth,et al.  Random paths to stability in two-sided matching , 1990 .

[60]  Robert W. Irving An Efficient Algorithm for the "Stable Roommates" Problem , 1985, J. Algorithms.

[61]  Krisztina Antal-Pomázi,et al.  A kis- és középvállalkozások növekedését meghatározó tényezők: A különböző finanszírozási formák hatása a vállalati növekedésre , 2011 .

[62]  Bettina Klaus,et al.  Paths to stability for matching markets with couples , 2007, Games Econ. Behav..

[63]  Yi-You Yang On the accessibility of the core , 2010, Games Econ. Behav..

[64]  Jimmy J. M. Tan A maximum stable matching for the roommates problem , 1990, BIT.

[65]  Marta Z. Kwiatkowska,et al.  Probabilistic symbolic model checking with PRISM: a hybrid approach , 2004, International Journal on Software Tools for Technology Transfer.

[66]  Brussels Bruegel,et al.  The threat of currency wars: a European perspective , 2010 .

[67]  M. Lackó,et al.  The Poor Health Status of the Hungarians; Comparative Macro-Analysis of the Likely Explanatory Factors on Hungarian and Austrian Data, 1960-2004 , 2011 .

[68]  C. Pearce,et al.  An Efficient Algorithm for the , 1999 .

[69]  Gergely Csorba,et al.  Estimating the Lock-in Effects of Switching Costs from Firm-Level Data , 2011 .

[70]  Xuemin Shen,et al.  Handbook of Peer-to-Peer Networking , 2009 .

[71]  Luc Lauwers,et al.  The Coalition Structure Core is Accessible , 2001, Games Econ. Behav..

[72]  L. S. Shapley,et al.  College Admissions and the Stability of Marriage , 2013, Am. Math. Mon..

[73]  Jinpeng Ma,et al.  On randomized matching mechanisms , 1996 .