Spitzer 3.6 and 4.5 μm full-orbit light curves of WASP-18

We present new light curves of the massive hot Jupiter system WASP-18 obtained with the Spitzer spacecraft covering the entire orbit at 3.6 and 4.5 μm. These light curves are used to measure the amplitude, shape and phase of the thermal phase effect for WASP-18 b. We find that our results for the thermal phase effect are limited to an accuracy of about 0.01 per cent by systematic noise sources of unknown origin. At this level of accuracy we find that the thermal phase effect has a peak-to-peak amplitude approximately equal to the secondary eclipse depth, has a sinusoidal shape and that the maximum brightness occurs at the same phase as mid-occultation to within about 5 ◦ at 3.6 μm and to within about 10 ◦ at 4.5 μm. The shape and amplitude of the thermal phase curve imply very low levels of heat redistribution within the atmosphere of the planet. We also perform a separate analysis to determine the system geometry by fitting a light curve model to the data covering the occultation and the transit. The secondary eclipse depths we measure at 3.6 and 4.5 μm are in good agreement with previous measurements and imply a very low albedo for WASP-18 b. The parameters of the system (masses, radii, etc.) derived from our analysis are also in good agreement with those from previous studies, but with improved precision. We use new high-resolution imaging and published limits on the rate of change of the mean radial velocity to check for the presence of any faint companion stars that may affect our results. We find that there is unlikely to be any significant contribution to the flux at Spitzer wavelengths from a stellar companion to WASP-18. We find that there is no evidence for variations in the times of eclipse from a linear ephemeris greater than about 100 s over 3 years.

[1]  A. Collier Cameron,et al.  The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b , 2012, 1201.2789.

[2]  Thomas J. Loredo,et al.  TRANSIT AND ECLIPSE ANALYSES OF THE EXOPLANET HD 149026b USING BLISS MAPPING , 2011, 1108.2057.

[3]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[4]  E. Quataert,et al.  The radial velocity signature of tides raised in stars hosting exoplanets , 2011, 1107.6005.

[5]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[6]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[7]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[8]  W. C. Bowman,et al.  SPITZER SECONDARY ECLIPSES OF WASP-18b , 2010, 1005.1017.

[9]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[10]  Jonathan Tennyson,et al.  Water in the atmosphere of HD 209458b from 3.6–8 μm IRAC photometric observations in primary transit , 2010 .

[11]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets - III. Additional planets and stellar models , 2010, 1006.4443.

[12]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[13]  W. Press,et al.  Numerical Recipes in Fortran: The Art of Scientific Computing.@@@Numerical Recipes in C: The Art of Scientific Computing. , 1994 .

[14]  Jean Manfroid,et al.  TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope , 2011 .

[15]  E. Agol,et al.  SECONDARY ECLIPSE PHOTOMETRY OF WASP-4b WITH WARM SPITZER , 2010, 1011.4066.

[16]  R. Mardling,et al.  Long-term tidal evolution of short-period planets with companions , 2007, 0706.0224.

[17]  R. Perna,et al.  THE EFFECTS OF IRRADIATION ON HOT JOVIAN ATMOSPHERES: HEAT REDISTRIBUTION AND ENERGY DISSIPATION , 2012, 1201.5391.

[18]  J. Southworth Homogeneous studies of transiting extrasolar planets - II. Physical properties , 2008, 0811.3277.

[19]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[20]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[21]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[22]  C. Moutou,et al.  Improved stellar parameters of CoRoT-7 A star hosting two super Earths , 2010, 1005.3208.

[23]  E. Agol,et al.  A TWO-DIMENSIONAL INFRARED MAP OF THE EXTRASOLAR PLANET HD 189733b , 2012, 1202.1883.

[24]  A. Collier Cameron,et al.  Thermal emission at 4.5 and 8 μm of WASP-17b, an extremely large planet in a slightly eccentric orbit , 2011, 1101.5620.

[25]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[26]  R. G. West,et al.  An orbital period of 0.94 days for the hot-Jupiter planet WASP-18b , 2009, Nature.

[27]  Drake Deming,et al.  Infrared radiation from an extrasolar planet , 2005, Nature.

[28]  Department of Physics,et al.  Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b , 2012, 1202.3829.

[29]  A. Burrows,et al.  ATMOSPHERE AND SPECTRAL MODELS OF THE KEPLER-FIELD PLANETS HAT-P-7b AND TrES-2 , 2010, 1006.1660.

[30]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[31]  Gregory Laughlin,et al.  ON THE ANOMALOUS RADII OF THE TRANSITING EXTRASOLAR PLANETS , 2011, 1101.5827.

[32]  R. Perna,et al.  OHMIC DISSIPATION IN THE ATMOSPHERES OF HOT JUPITERS , 2010, 1009.3273.

[33]  D. Charbonneau,et al.  THE CLIMATE OF HD 189733b FROM FOURTEEN TRANSITS AND ECLIPSES MEASURED BY SPITZER , 2010, 1007.4378.

[34]  Burt Nelson,et al.  Eclipsing-Binary Solutions by Sequential Optimization of the Parameters , 1972 .

[35]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[36]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[37]  P. Etzel,et al.  Photometric orbits of seven detached eclipsing binaries , 1981 .

[38]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[39]  G. Scarpetta,et al.  PHYSICAL PROPERTIES OF THE 0.94-DAY PERIOD TRANSITING PLANETARY SYSTEM WASP-18 , 2009, 0910.4875.

[40]  J. Goodman THERMODYNAMICS OF ATMOSPHERIC CIRCULATION ON HOT JUPITERS , 2008, 0810.1282.

[41]  A. Collier Cameron,et al.  An improved method for estimating the masses of stars with transiting planets , 2010, 1004.1991.

[42]  Drake Deming,et al.  3.6 AND 4.5 μm PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b , 2012, 1206.6887.

[43]  Á. Giménez Equations for the analysis of the light curves of extra-solar planetary transits , 2006 .

[44]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[45]  B. Smalley,et al.  Accurate fundamental parameters for 23 bright solar-type stars , 2010, 1002.4268.

[46]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[47]  S. Seager,et al.  A NEW 24 μm PHASE CURVE FOR υ ANDROMEDAE b , 2010, 1008.0393.

[48]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[49]  Paul B. Etzel,et al.  A Simple Synthesis Method for Solving the Elements of Well-Detached Eclipsing Systems , 1981 .

[50]  S. Barnes Accepted for publication in The Astrophysical Journal Ages for illustrative field stars using gyrochronology: viability, limitations and errors , 2022 .

[51]  K. Menou,et al.  A GENERAL CIRCULATION MODEL FOR GASEOUS EXOPLANETS WITH DOUBLE-GRAY RADIATIVE TRANSFER , 2011, 1112.1658.

[52]  A. Cumming,et al.  OHMIC DISSIPATION IN THE INTERIORS OF HOT JUPITERS , 2012, 1207.3278.

[53]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[54]  D. F. Gray,et al.  The Observation and Analysis of Stellar Photospheres , 2021 .

[55]  John Southworth,et al.  Homogeneous studies of transiting extrasolar planets – IV. Thirty systems with space-based light curves , 2011, 1107.1235.

[56]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[57]  P. Maxted,et al.  UBV(RI) C photometry of transiting planet hosting stars , 2011, 1108.0349.

[58]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[59]  C. Aerts,et al.  A spectroscopic study of southern (candidate) gamma Doradus stars. II. Detailed abundance analysis and fundamental parameters , 2007, 0711.3819.

[60]  Drake Deming,et al.  The Phase-Dependent Infrared Brightness of the Extrasolar Planet ʊ Andromedae b , 2006, Science.

[61]  David Charbonneau,et al.  MULTIWAVELENGTH CONSTRAINTS ON THE DAY–NIGHT CIRCULATION PATTERNS OF HD 189733b , 2008, 0802.1705.

[62]  A. Burrows,et al.  THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS , 2011, 1112.0574.

[63]  David Charbonneau,et al.  Detection of Thermal Emission from an Extrasolar Planet , 2005 .

[64]  Drake Deming,et al.  A Search for a Sub-Earth-Sized Companion to GJ 436 and a Novel Method to Calibrate Warm Spitzer IRAC Observations , 2010, 1009.0755.

[65]  Albert M. Fowler,et al.  Infrared Astronomical Instrumentation , 1998 .