Intra-specific diversity of Serratia marcescens in Anopheles mosquito midgut defines Plasmodium transmission capacity

[1]  J. Kagan,et al.  The Dorsoventral Regulatory Gene Cassette spätzle / Toll / cactus Controls the Potent Antifungal Response in Drosophila Adults , 2015 .

[2]  H. Shahbazkia,et al.  Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection , 2012, PLoS pathogens.

[3]  A. Gupta,et al.  Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). , 2012, FEMS microbiology ecology.

[4]  A. Enayati,et al.  dentification of bacterial microflora in the midgut of the larvae and adult of wild aught Anopheles stephensi : A step toward finding suitable paratransgenesis andidates , 2011 .

[5]  M. A. Berbert-Molina,et al.  Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.) , 2011, Parasites & Vectors.

[6]  G. Dimopoulos,et al.  Natural Microbe-Mediated Refractoriness to Plasmodium Infection in Anopheles gambiae , 2011, Science.

[7]  M. Riehle,et al.  A Cryptic Subgroup of Anopheles gambiae Is Highly Susceptible to Human Malaria Parasites , 2011, Science.

[8]  F. Thompson,et al.  Bacterial Community Diversity in the Brazilian Atlantic Forest Soils , 2010, Microbial Ecology.

[9]  C. Barillas-Mury,et al.  Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes , 2010, Science.

[10]  M. A. Berbert-Molina,et al.  Culture-dependent and culture-independent characterization of microorganisms associated with Aedes aegypti (Diptera: Culicidae) (L.) and dynamics of bacterial colonization in the midgut. , 2010, Acta tropica.

[11]  B. Ollivier,et al.  Serratia glossinae sp. nov., isolated from the midgut of the tsetse fly Glossina palpalis gambiensis. , 2010, International journal of systematic and evolutionary microbiology.

[12]  G. Dimopoulos,et al.  Mosquito immune defenses against Plasmodium infection. , 2010, Developmental and comparative immunology.

[13]  Kyung-Suk Cho,et al.  Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5. , 2009, Journal of microbiology and biotechnology.

[14]  B. Nelson,et al.  p38 MAPK-dependent phagocytic encapsulation confers infection tolerance in Drosophila. , 2009, Cell host & microbe.

[15]  S. Meister,et al.  Anopheles gambiae PGRPLC-Mediated Defense against Bacteria Modulates Infections with Malaria Parasites , 2009, PLoS pathogens.

[16]  G. Dimopoulos,et al.  Implication of the Mosquito Midgut Microbiota in the Defense against Malaria Parasites , 2009, PLoS pathogens.

[17]  B. Nelson,et al.  Rapid recruitment of innate immunity regulates variation of intracellular pathogen resistance in Drosophila. , 2009, Biochemical and biophysical research communications.

[18]  N. Verstraeten,et al.  Living on a surface: swarming and biofilm formation. , 2008, Trends in microbiology.

[19]  J. Shu,et al.  Regulation of Swarming Motility and flhDCSm Expression by RssAB Signaling in Serratia marcescens , 2008, Journal of bacteriology.

[20]  David Lampe,et al.  Using bacteria to express and display anti-Plasmodium molecules in the mosquito midgut. , 2007, International journal for parasitology.

[21]  Paul S. Cohen,et al.  Role of Motility and the flhDC Operon in Escherichia coli MG1655 Colonization of the Mouse Intestine , 2007, Infection and Immunity.

[22]  E. Levashina,et al.  Boosting NF-kappaB-dependent basal immunity of Anopheles gambiae aborts development of Plasmodium berghei. , 2006, Immunity.

[23]  Oscar P. Kuipers,et al.  Phenotypic variation in bacteria: the role of feedback regulation , 2006, Nature Reviews Microbiology.

[24]  Y. Chinzei,et al.  A calcium‐dependent protein kinase regulates Plasmodium ookinete access to the midgut epithelial cell , 2006, Molecular microbiology.

[25]  Eloi S. Garcia,et al.  Gut microbiota and parasite transmission by insect vectors. , 2005, Trends in parasitology.

[26]  Traci Haddock,et al.  Mouse Intestine Selects Nonmotile flhDC Mutants of Escherichia coli MG1655 with Increased Colonizing Ability and Better Utilization of Carbon Sources , 2005, Infection and Immunity.

[27]  S. Ho,et al.  Characterization of the dapA-nlpB Genetic Locus Involved in Regulation of Swarming Motility, Cell Envelope Architecture, Hemolysin Production, and Cell Attachment Ability in Serratia marcescens , 2005, Infection and Immunity.

[28]  G. Christophides,et al.  Functional Genomic Analysis of Midgut Epithelial Responses in Anopheles during Plasmodium Invasion , 2005, Current Biology.

[29]  A. Tominaga,et al.  Evolutionary Changes of the flhDC Flagellar Master Operon in Shigella Strains , 2005, Journal of bacteriology.

[30]  P. Azambuja,et al.  Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. , 2004, Experimental parasitology.

[31]  R. Losick,et al.  Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility , 2004, Molecular microbiology.

[32]  D. Briggs,et al.  An Evolutionary Perspective , 2004, J. Decis. Syst..

[33]  N. Ratcliffe,et al.  microbe–vector interactions in vector-borne diseases: Vector immunity , 2004 .

[34]  J. Hernández-Ávila,et al.  Bacteria in Midguts of Field-Collected Anopheles albimanus Block Plasmodium vivax Sporogonic Development , 2003, Journal of medical entomology.

[35]  F. Catteruccia,et al.  Impact of Genetic Manipulation on the Fitness of Anopheles stephensi Mosquitoes , 2003, Science.

[36]  J. Hoffmann,et al.  Drosophila innate immunity: an evolutionary perspective , 2002, Nature Immunology.

[37]  P. Atkinson,et al.  What's buzzing? Mosquito genomics and transgenic mosquitoes , 2002, Genesis.

[38]  Xiao-Fan Wang,et al.  Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite , 2002 .

[39]  T. Michel,et al.  Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein , 2001, Nature.

[40]  T. K. Stevens,et al.  Germline transformation of the malaria vector, Anopheles gambiae, with the piggyBac transposable element , 2001, Insect molecular biology.

[41]  R. Sinden,et al.  Plasmodium invasion of mosquito cells: hawk or dove? , 2001, Trends in parasitology.

[42]  K. Hughes,et al.  Coupling of Flagellar Gene Expression to Flagellar Assembly in Salmonella enterica Serovar Typhimurium andEscherichia coli , 2000, Microbiology and Molecular Biology Reviews.

[43]  J. Shu,et al.  Role of flhDC in the expression of the nuclease gene nucA, cell division and flagellar synthesis in Serratia marcescens. , 2000, Journal of biomedical science.

[44]  Andrea Crisanti,et al.  Stable germline transformation of the malaria mosquito Anopheles stephensi , 2000, Nature.

[45]  Leo Eberl,et al.  Surface Motility of Serratia liquefaciens MG1 , 1999, Journal of bacteriology.

[46]  G. Fraser,et al.  Swarming motility. , 1999, Current opinion in microbiology.

[47]  M. Meister,et al.  A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Laux,et al.  Bacterial adhesion to and penetration of intestinal mucus in vitro. , 1995, Methods in enzymology.

[49]  J. Nataro,et al.  Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. , 1993, Experimental parasitology.

[50]  Y. Komeda,et al.  Transcriptional control of flagellar genes in Escherichia coli K-12 , 1986, Journal of bacteriology.

[51]  M. Coluzzi,et al.  Behavioural divergences between mosquitoes with different inversion karyotypes in polymorphic populations of the Anopheles gambiae complex , 1977, Nature.

[52]  J. Henrichsen,et al.  Bacterial surface translocation: a survey and a classification. , 1972, Bacteriological reviews.