An efficient construction of reduced deformable objects

Many efficient computational methods for physical simulation are based on model reduction. We propose new model reduction techniques for the approximation of reduced forces and for the construction of reduced shape spaces of deformable objects that accelerate the construction of a reduced dynamical system, increase the accuracy of the approximation, and simplify the implementation of model reduction. Based on the techniques, we introduce schemes for real-time simulation of deformable objects and interactive deformation-based editing of triangle or tet meshes. We demonstrate the effectiveness of the new techniques in different experiments with elastic solids and shells and compare them to alternative approaches.

[1]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[2]  Markus H. Gross,et al.  Adaptive Space Deformations Based on Rigid Cells , 2007, Comput. Graph. Forum.

[3]  Jernej Barbic,et al.  Deformable object animation using reduced optimal control , 2009, ACM Trans. Graph..

[4]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[5]  Hyeong-Seok Ko,et al.  Modal warping: real-time simulation of large rotational deformation and manipulation , 2004, IEEE Transactions on Visualization and Computer Graphics.

[6]  Jernej Barbic,et al.  Interactive authoring of simulation-ready plants , 2013, ACM Trans. Graph..

[7]  Alberto Cardona,et al.  A reduction method for nonlinear structural dynamic analysis , 1985 .

[8]  Paolo Tiso,et al.  Optimal second order reduction basis selection for nonlinear transient analysis , 2011 .

[9]  Markus H. Gross,et al.  Rig-space physics , 2012, ACM Trans. Graph..

[10]  Pierre Alliez,et al.  Polygon Mesh Processing , 2010 .

[11]  Volkan Cevher,et al.  On accelerated hard thresholding methods for sparse approximation , 2011, Optical Engineering + Applications.

[12]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[13]  Denis Zorin,et al.  Subspace integration with local deformations , 2013, ACM Trans. Graph..

[14]  Theodore Kim,et al.  Skipping steps in deformable simulation with online model reduction , 2009, ACM Trans. Graph..

[15]  Olga Sorkine-Hornung,et al.  Fast automatic skinning transformations , 2012, ACM Trans. Graph..

[16]  Mark Meyer,et al.  Key Point Subspace Acceleration and soft caching , 2007, SIGGRAPH 2007.

[17]  Doug L. James,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH 2008.

[18]  Jernej Barbic,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, ACM Trans. Graph..

[19]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[20]  Doug L. James,et al.  Real-Time subspace integration for St. Venant-Kirchhoff deformable models , 2005, SIGGRAPH 2005.

[21]  Theodore Kim,et al.  Subspace fluid re-simulation , 2013, ACM Trans. Graph..

[22]  Jernej Barbic,et al.  Interactive editing of deformable simulations , 2012, ACM Trans. Graph..

[23]  Andrew Lewis,et al.  Model reduction for real-time fluids , 2006, SIGGRAPH '06.

[24]  Mike E. Davies,et al.  Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance , 2010, IEEE Journal of Selected Topics in Signal Processing.

[25]  Adrien Treuille,et al.  Modular bases for fluid dynamics , 2009, ACM Trans. Graph..

[26]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[27]  Christoph von Tycowicz,et al.  Interactive surface modeling using modal analysis , 2011, TOGS.

[28]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[29]  Olga Sorkine-Hornung,et al.  On Linear Variational Surface Deformation Methods , 2008, IEEE Transactions on Visualization and Computer Graphics.

[30]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[31]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[32]  Kun Zhou,et al.  Interactive Shape Interpolation through Controllable Dynamic Deformation , 2011, IEEE Transactions on Visualization and Computer Graphics.

[33]  Jernej Barbic,et al.  Real-time control of physically based simulations using gentle forces , 2008, ACM Trans. Graph..

[34]  Doug L. James,et al.  Harmonic shells: a practical nonlinear sound model for near-rigid thin shells , 2009, ACM Trans. Graph..

[35]  M. Ben-Chen,et al.  Variational harmonic maps for space deformation , 2009, SIGGRAPH 2009.

[36]  Christoph von Tycowicz,et al.  Interactive spacetime control of deformable objects , 2012, ACM Trans. Graph..

[37]  Theodore Kim,et al.  Optimizing cubature for efficient integration of subspace deformations , 2008, SIGGRAPH Asia '08.

[38]  M. Pauly,et al.  Embedded deformation for shape manipulation , 2007, SIGGRAPH 2007.

[39]  Alex Pentland,et al.  Good vibrations: modal dynamics for graphics and animation , 1989, SIGGRAPH.

[40]  Jorge Nocedal,et al.  Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization” , 2011, TOMS.

[41]  J. Marsden,et al.  Dimensional model reduction in non‐linear finite element dynamics of solids and structures , 2001 .