Tilings, groves and multiset permutations: asympotics of rational generating functions whose pole set includes a cone

We consider a number of combinatorial problems in which rational generating functions may be obtained, whose denominators have factors with certain singularities. Specifically, there exist cone points, near which one of the factors is asymptotic to a nondegenerate quadratic. We compute the asymptotics of the coefficients of such a generating function. The computation requires some topological deformations as well as Fourier-Laplace transforms of generalized functions. We apply the results of the theory to specific combinatorial problems.

[1]  Mark C. Wilson,et al.  Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions , 2005, SIAM Rev..

[2]  Robin Pemantle,et al.  Quantum random walks in one dimension via generating functions , 2007 .

[3]  David E. Speyer,et al.  An arctic circle theorem for Groves , 2004, J. Comb. Theory, Ser. A.

[4]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences II: Multiple Points of the Singular Variety , 2004, Combinatorics, Probability and Computing.

[5]  Gabriel D. Carroll,et al.  The Cube Recurrence , 2004, Electron. J. Comb..

[6]  R. Donangelo,et al.  Quantum random walk on the line as a Markovian process , 2003, quant-ph/0310171.

[7]  G. Grimmett,et al.  Weak limits for quantum random walks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Yuliy Baryshnikov,et al.  Convolutions of inverse linear functions via multivariate residues , 2004 .

[9]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[10]  J. Propp Generalized domino-shuffling , 2001, Theor. Comput. Sci..

[11]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences: I. Smooth Points of the Singular Variety , 2002, J. Comb. Theory, Ser. A.

[12]  Hideyuki Ishi,et al.  Positive Riesz distributions on homogeneous cones , 2000 .

[13]  J. Propp,et al.  Random Domino Tilings and the Arctic Circle Theorem , 1998, math/9801068.

[14]  G. Pólya,et al.  Functions of One Complex Variable , 1998 .

[15]  Osman Güler,et al.  Hyperbolic Polynomials and Interior Point Methods for Convex Programming , 1997, Math. Oper. Res..

[16]  J. Propp,et al.  Local statistics for random domino tilings of the Aztec diamond , 1996, math/0008243.

[17]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[18]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[19]  Andrea L. Bertozzi,et al.  Multidimensional Residues, Generating Functions, and Their Application to Queueing Networks , 1993, SIAM Rev..

[20]  Greg Kuperberg,et al.  Alternating-Sign Matrices and Domino Tilings (Part II) , 1992 .

[21]  Ira M. Gessel,et al.  Super Ballot Numbers , 1992, J. Symb. Comput..

[22]  J. W. Bruce,et al.  STRATIFIED MORSE THEORY (Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) 14) , 1989 .

[23]  Edward A. Bender,et al.  Central and Local Limit Theorems Applied to Asymptotic Enumeration II: Multivariate Generating Functions , 1983, J. Comb. Theory, Ser. A.

[24]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[25]  Richard Askey,et al.  Permutation Problems and Special Functions , 1976, Canadian Journal of Mathematics.

[26]  R. Askey Orthogonal Polynomials and Special Functions , 1975 .

[27]  M. Atiyah,et al.  Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .

[28]  G. Shilov,et al.  Generalized Functions, Volume 1: Properties and Operations , 1967 .

[29]  L. Gårding Linear hyperbolic partial differential equations with constant coefficients , 1951 .

[30]  M. Riesz L'intégrale de Riemann-Liouville et le problème de Cauchy , 1949 .