Roesky?s ketone: a spectroscopic study

We present a joint experimental-theoretical spectroscopic study of 5-oxo-1,3,2,4-dithiadiazole, also known as Roesky’s ketone. The theoretical results of a vibrational analysis, calculated at the DFT/B3LYP/6-311+G* level of theory, of the title compound have been compared with experimental data, consisting of Raman and IR frequencies in different phases, and the bands have been assigned to the normal vibrations of the molecule. Additionally, an analysis of the origin of the high intensity of the band assigned to the CO stretching mode was performed based on calculated stockholder charges and atomic dipoles. The results of theoretical calculations of the 13C and 14N NMR chemical shifts are compared to experimentally obtained shifts.

[1]  C. Alsenoy,et al.  Roesky's Ketone: Structure, Aromaticity and Reactivity , 2004 .

[2]  Paul Geerlings,et al.  Hirshfeld partitioning of the electron density: Atomic dipoles and their relation with functional group properties , 2003, J. Comput. Chem..

[3]  Wilfried Langenaeker,et al.  Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density , 2002, J. Comput. Chem..

[4]  D. Rankin,et al.  Planar 1,3λ4δ2,2,4‐Benzodithiadiazine and Its Nonplanar 5,6,7,8‐Tetrafluoro Derivative: Gas‐Phase Structures Studied by Electron Diffraction and Ab Initio Calculations , 2001 .

[5]  R. Boere,et al.  Electrochemistry of redox-active Group 15/16 heterocyles , 2000 .

[6]  Anik Peeters,et al.  Systematic study of the parameters determining stockholder charges , 2000 .

[7]  J. Rawson,et al.  BENZO-FUSED DITHIAZOLYL RADICALS : FROM CHEMICAL CURIOSITIES TO MATERIALS CHEMISTRY , 1999 .

[8]  A. J. Banister,et al.  Poly(sulfur nitride): The First Polymeric Metal , 1998 .

[9]  J. Rawson,et al.  The Chemistry of Dithiadiazolylium and Dithiadiazolyl Rings , 1995 .

[10]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[11]  C. Alsenoy,et al.  brabo: a program for ab initio studies on large molecular systems , 1993 .

[12]  R. H. deLaat,et al.  The thiazyl chloride (NSCl)/silver isocyanate reaction: a helium I photoelectron, photoionization mass spectroscopy, mid-infrared, and ab initio study of the gaseous S2N2CO molecule , 1993 .

[13]  Peter Pulay,et al.  The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces , 1992 .

[14]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[15]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[16]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[17]  Peter Pulay,et al.  Systematic AB Initio Gradient Calculation of Molecular Geometries, Force Constants, and Dipole Moment Derivatives , 1979 .

[18]  A. Simon,et al.  Kristallstruktur von 5-Oxo-1,3λ4,2,4-dithiadiazol, S2N2CO, und seine Addukte mit Lewis-Säuren , 1978 .

[19]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[20]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[21]  R. Mcweeny Perturbation Theory for the Fock-Dirac Density Matrix , 1962 .

[22]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .

[23]  C. Alsenoy,et al.  Fluorinated 1,3λ4δ2,2,4‐Benzodithiadiazines − A Synthetic, Structural and Theoretical Study , 2003 .

[24]  J. Rawson,et al.  Magnetic Properties of Thiazyl Radicals , 2001 .

[25]  J. Rawson,et al.  Sulfur–nitrogen chains: rational and irrational behaviour , 1997 .

[26]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[27]  V. Fock,et al.  Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems , 1930 .