Enhanced Visual Separation of Clusters by M-Mapping to Facilitate Cluster Analysis

The goal of clustering in data mining is to distinguish objects into partitions/ clusters based on given criteria. Visualization methods and techniques may provide users an intuitively appealing interpretation of cluster structures. Having good visually separated groups of the studied data is beneficial for detecting cluster information as well as refining the membership formation of clusters. In this paper, we propose a novel visual approach called M-mapping, based on the projection technique of HOV3 to achieve the separation of cluster structures. With M-mapping, users can explore visual cluster clues intuitively and validate clusters effectively by matching the geometrical distributions of clustered and non-clustered subsets produced in HOV3.

[1]  Anthony Chiu Wa Lo,et al.  Cluster validity analysis using subsampling , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[2]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[3]  Markus Gross,et al.  H-BLOB: a hierarchical visual clustering method using implicit surfaces , 2000 .

[4]  Eser Kandogan,et al.  Visualizing multi-dimensional clusters, trends, and outliers using star coordinates , 2001, KDD '01.

[5]  Petra Perner,et al.  Advances in Data Mining , 2002, Lecture Notes in Computer Science.

[6]  Hans-Peter Kriegel,et al.  Subspace selection for clustering high-dimensional data , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).

[7]  Alan W. Black,et al.  Measuring unsupervised acoustic clustering through phoneme pair merge-and-split tests , 2005, INTERSPEECH.

[8]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[9]  Mehmet A. Orgun,et al.  A Visual Approach for External Cluster Validation , 2007, 2007 IEEE Symposium on Computational Intelligence and Data Mining.

[10]  Mehmet A. Orgun,et al.  HOV3: An Approach to Visual Cluster Analysis , 2006, ADMA.

[11]  Ben Shneiderman,et al.  A Knowledge Integration Framework for Information Visualization , 2005, From Integrated Publication and Information Systems to Virtual Information and Knowledge Environments.

[12]  Tao Lin,et al.  A Visual Method of Cluster Validation with Fastmap , 2000, PAKDD.

[13]  Mehmet A. Orgun,et al.  A Prediction-Based Visual Approach for Cluster Exploration and Cluster Validation by HOV3 , 2007, PKDD.

[14]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[15]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[16]  Daniel A. Keim,et al.  HD-Eye: Visual Mining of High-Dimensional Data , 1999, IEEE Computer Graphics and Applications.

[17]  Michalis Vazirgiannis,et al.  Cluster validity methods: part I , 2002, SGMD.

[18]  Ricardo Vilalta,et al.  An efficient approach to external cluster assessment with an application to martian topography , 2007, Data Mining and Knowledge Discovery.

[19]  Ben Shneiderman Inventing Discovery Tools: Combining Information Visualization with Data Mining , 2001, ALT.

[20]  Keke Chen,et al.  VISTA: Validating and Refining Clusters Via Visualization , 2004, Inf. Vis..

[21]  Michael K. Ng,et al.  An empirical study on the visual cluster validation method with Fastmap , 2001, Proceedings Seventh International Conference on Database Systems for Advanced Applications. DASFAA 2001.

[22]  Samuel Kaski,et al.  Data Visualization and Analysis with Self-Organizing Maps in Learning Metrics , 2001, DaWaK.

[23]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[24]  Matthias Hemmje,et al.  From Integrated Publication and Information Systems to Information and Knowledge Environments , 2005 .