An implicit leap-frog discontinuous Galerkin method for the time-domain Maxwell’s equations in metamaterials

Numerical simulation of metamaterials play a very important role in the design of invisibility cloak, and sub-wavelength imaging. In this paper, we propose a leap-frog discontinuous Galerkin method to solve the time-dependent Maxwell’s equations in metamaterials. Conditional stability and error estimates are proved for the scheme. The proposed algorithm is implemented and numerical results supporting the analysis are provided.

[1]  Thomas J. R. Hughes,et al.  A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method , 2006 .

[2]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[3]  Karen Dragon Devine,et al.  A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .

[4]  Clint Dawson,et al.  Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations , 2002 .

[5]  Ilaria Perugia,et al.  Interior penalty method for the indefinite time-harmonic Maxwell equations , 2005, Numerische Mathematik.

[6]  E. Montseny,et al.  Dissipative terms and local time-stepping improvements in a spatial high order Discontinuous Galerkin scheme for the time-domain Maxwell's equations , 2008, J. Comput. Phys..

[7]  Victor M. Calo,et al.  A class of discontinuous Petrov-Galerkin methods. Part IV: The optimal test norm and time-harmonic wave propagation in 1D , 2011, J. Comput. Phys..

[8]  S. Piperno,et al.  Discontinuous Galerkin time‐domain solution of Maxwell's equations on locally refined grids with fictitious domains , 2010 .

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  B. Rivière,et al.  A Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media , 2002 .

[11]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[12]  S. Piperno Symplectic local time-stepping in non-dissipative DGTD methods applied to wave propagation problems , 2006 .

[13]  Weimin Han,et al.  A new C0 discontinuous Galerkin method for Kirchhoff plates , 2010 .

[14]  M. Y. Hussaini,et al.  An Analysis of the Discontinuous Galerkin Method for Wave Propagation Problems , 1999 .

[15]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[16]  D. Schötzau,et al.  Interior penalty discontinuous Galerkin method for Maxwell's equations , 2007 .

[17]  Jichun Li,et al.  Development of discontinuous Galerkin methods for Maxwell's equations in metamaterials and perfectly matched layers , 2011, J. Comput. Appl. Math..

[18]  R. Mittra,et al.  FDTD Modeling of Metamaterials: Theory and Applications , 2008 .

[19]  Aihua Wood,et al.  Finite Element Analysis for Wave Propagation in Double Negative Metamaterials , 2007, J. Sci. Comput..

[20]  D. Schötzau,et al.  Interior penalty discontinuous Galerkin method for Maxwell's equations: optimal L2-norm error estimates , 2007 .

[21]  Stéphane Lanteri,et al.  Locally implicit discontinuous Galerkin method for time domain electromagnetics , 2010, J. Comput. Phys..

[22]  Pingwen Zhang,et al.  Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions , 2004 .

[23]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[24]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[25]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[26]  Jichun Li Optimal L 2 Error Estimates for the Interior Penalty DG Method for Maxwell’s Equations in Cold Plasma , 2012 .

[27]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[28]  Yunqing Huang,et al.  Interior penalty DG methods for Maxwell's equations in dispersive media , 2011, J. Comput. Phys..

[29]  Doron Levy,et al.  Local discontinuous Galerkin methods for nonlinear dispersive equations , 2004 .

[30]  Jichun Li Numerical convergence and physical fidelity analysis for Maxwell’s equations in metamaterials , 2009 .

[31]  Zhimin Zhang,et al.  Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media , 2010, J. Comput. Phys..

[32]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[33]  Eric Machorro,et al.  Discontinuous Galerkin finite element method applied to the 1-D spherical neutron transport equation , 2005, J. Comput. Phys..

[34]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .