Sodium-Based vs. Lithium-Based Dual-Ion Cells: Electrochemical Study of Anion Intercalation/De-Intercalation into/from Graphite and Metal Plating/Dissolution Behavior

[1]  Maohua Sheng,et al.  A Novel Tin‐Graphite Dual‐Ion Battery Based on Sodium‐Ion Electrolyte with High Energy Density , 2017 .

[2]  M. Winter,et al.  Best Practice: Performance and Cost Evaluation of Lithium Ion Battery Active Materials with Special Emphasis on Energy Efficiency , 2016 .

[3]  M. Winter,et al.  New insights into the uptake/release of FTFSI− anions into graphite by means of in situ powder X-ray diffraction , 2016 .

[4]  Zelang Jian,et al.  A Hydrocarbon Cathode for Dual-Ion Batteries , 2016 .

[5]  M. Winter,et al.  Does Size really Matter? New Insights into the Intercalation Behavior of Anions into a Graphite-Based Positive Electrode for Dual-Ion Batteries , 2016 .

[6]  P. Moreau,et al.  Reversible anion intercalation in a layered aromatic amine: a high-voltage host structure for organic batteries , 2016 .

[7]  M. Winter,et al.  Nanostructured ZnFe2O4 as Anode Material for Lithium-Ion Batteries: Ionic Liquid-Assisted Synthesis and Performance Evaluation with Special Emphasis on Comparative Metal Dissolution. , 2016, Acta chimica Slovenica.

[8]  M. Winter,et al.  Dilatometric Study of the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide and Hexafluorophosphate Anions into Carbon-Based Positive Electrodes , 2015 .

[9]  J. Long,et al.  A Dual-Ion Battery Cathode via Oxidative Insertion of Anions in a Metal-Organic Framework. , 2015, Journal of the American Chemical Society.

[10]  J. Tübke,et al.  Anion intercalation into graphite from a sodium-containing electrolyte , 2015 .

[11]  M. Yoshio,et al.  Solvation effect on intercalation behaviour of tetrafluoroborate into graphite electrode , 2015 .

[12]  M. Winter,et al.  Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte , 2014 .

[13]  M. Winter,et al.  In situ X-ray Diffraction Studies of Cation and Anion Inter­calation into Graphitic Carbons for Electrochemical Energy Storage Applications , 2014 .

[14]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[15]  M. Winter,et al.  Dual-Ion Cells based on the Electrochemical Intercalation of Asymmetric Fluorosulfonyl-(trifluoromethanesulfonyl) imide Anions into Graphite , 2014 .

[16]  S. Passerini,et al.  Ionic Coordination in Magnesium Ionic Liquid-Based Electrolytes: Solvates with Mobile Mg2+ Cations , 2014 .

[17]  M. Winter,et al.  Study of the Electrochemical Behavior of Dual-Graphite Cells Using Ionic Liquid-Based Electrolytes , 2014 .

[18]  M. Winter,et al.  Study of the Electrochemical Intercalation of Different Anions from Non-Aqueous Electrolytes into a Graphite-Based Cathode , 2014 .

[19]  Kang Xu,et al.  Dual-graphite chemistry enabled by a high voltage electrolyte , 2014 .

[20]  J. Janek,et al.  Electrochemical stability of non-aqueous electrolytes for sodium-ion batteries and their compatibility with Na(0.7)CoO2. , 2014, Physical chemistry chemical physics : PCCP.

[21]  M. Winter,et al.  X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells , 2013 .

[22]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[23]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[24]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[25]  M. Winter,et al.  Electrochemical Intercalation of Bis(Trifluoromethanesulfonyl) Imide Anion into Various Graphites for Dual-Ion Cells , 2013 .

[26]  M. Winter,et al.  Toward Na-ion Batteries—Synthesis and Characterization of a Novel High Capacity Na Ion Intercalation Material , 2013 .

[27]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[28]  T. Fukutsuka,et al.  Electrochemical Intercalation of Bis(fluorosulfonyl)amide Anion into Graphite , 2012 .

[29]  Martin Winter,et al.  Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes , 2012 .

[30]  Martin Winter,et al.  Lithium ion batteries as key component for energy storage in automotive and stationary applications , 2011, 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC).

[31]  M. Mench,et al.  Redox flow batteries: a review , 2011 .

[32]  G. Soloveichik Battery technologies for large-scale stationary energy storage. , 2011, Annual review of chemical and biomolecular engineering.

[33]  M. Lerner,et al.  The first graphite intercalation compounds containing tris(pentafluoroethyl)trifluorophosphate , 2010 .

[34]  Chunbo Zhu,et al.  Analysis of the key factors affecting the energy efficiency of batteries in electric vehicle , 2010 .

[35]  P. Novák,et al.  The influence of electrolyte and graphite type on the PF 6 - intercalation behaviour at high potentials , 2009 .

[36]  Martin Winter,et al.  Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes? , 2001 .

[37]  M. Lerner,et al.  Electrochemical Preparation of Graphite Bis(trifluoromethanesulfonyl) Imide , 2001 .

[38]  J. Dahn,et al.  Energy and Capacity Projections for Practical Dual‐Graphite Cells , 2000 .

[39]  J. Dahn,et al.  Electrochemical Intercalation of PF 6 into Graphite , 2000 .

[40]  H. Kohlschütter,et al.  E. Wiberg: Lehrbuch der anorganischen Chemie (begründet von A. F. Holleman), 57.–70. Auflage. Walter de Gruyter & Co., Berlin 1964. 766 Seiten. Preis: DM 32,—. , 1964 .

[41]  T. Ishihara,et al.  Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte , 2016 .

[42]  Patrik Johansson,et al.  Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity , 2014 .

[43]  M. Winter,et al.  Influence of Graphite Characteristics on the Electrochemical Intercalation of Bis(trifluoromethanesulfonyl) imide Anions into a Graphite-Based Cathode , 2013 .

[44]  Martin Winter,et al.  Reversible Intercalation of Bis(trifluoromethanesulfonyl)imide Anions from an Ionic Liquid Electrolyte into Graphite for High Performance Dual-Ion Cells , 2012 .

[45]  Heinrich Remy,et al.  Lehrbuch der anorganischen Chemie , 1900, Nature.