Modelling Dynamic Item Complementarity with Graph Neural Network for Recommendation

[1]  Xiangnan He,et al.  LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation , 2020, SIGIR.

[2]  Yin Zhang,et al.  Key Opinion Leaders in Recommendation Systems: Opinion Elicitation and Diffusion , 2020, WSDM.

[3]  Yiqun Liu,et al.  Modeling Item-Specific Temporal Dynamics of Repeat Consumption for Recommender Systems , 2019, WWW.

[4]  Le Wu,et al.  A Neural Influence Diffusion Model for Social Recommendation , 2019, SIGIR.

[5]  Yiqun Liu,et al.  Jointly Learning Explainable Rules for Recommendation with Knowledge Graph , 2019, WWW.

[6]  Yuan He,et al.  Graph Neural Networks for Social Recommendation , 2019, WWW.

[7]  Jie Liu,et al.  Representing and Recommending Shopping Baskets with Complementarity, Compatibility and Loyalty , 2018, CIKM.

[8]  Mengting Wan,et al.  Recommendation Through Mixtures of Heterogeneous Item Relationships , 2018, CIKM.

[9]  Le Wu,et al.  Attentive Recurrent Social Recommendation , 2018, SIGIR.

[10]  Jure Leskovec,et al.  Graph Convolutional Neural Networks for Web-Scale Recommender Systems , 2018, KDD.

[11]  Zihan Wang,et al.  A Path-constrained Framework for Discriminating Substitutable and Complementary Products in E-commerce , 2018, WSDM.

[12]  Nitesh V. Chawla,et al.  metapath2vec: Scalable Representation Learning for Heterogeneous Networks , 2017, KDD.

[13]  Tat-Seng Chua,et al.  Neural Collaborative Filtering , 2017, WWW.

[14]  Paul Covington,et al.  Deep Neural Networks for YouTube Recommendations , 2016, RecSys.

[15]  Elena Smirnova,et al.  Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation , 2016, RecSys.

[16]  Jure Leskovec,et al.  Inferring Networks of Substitutable and Complementary Products , 2015, KDD.

[17]  Jimeng Sun,et al.  Temporal recommendation on graphs via long- and short-term preference fusion , 2010, KDD.

[18]  Barry L. Bayus,et al.  Product Complements and Substitutes in the Real World: The Relevance of “Other Products” , 2004 .