An Aging Model for Lithium-Ion Cells

[1]  Ralph E. White,et al.  Solvent Diffusion Model for Aging of Lithium-Ion Battery Cells , 2004 .

[2]  Vojtech Svoboda,et al.  Capacity and power fading mechanism identification from a commercial cell evaluation , 2007 .

[3]  Steven B. Smith,et al.  Digital Signal Processing: A Practical Guide for Engineers and Scientists , 2002 .

[4]  Joeri Van Mierlo,et al.  Models of energy sources for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and engine-generators , 2004 .

[5]  Ralph E. White,et al.  A generalized cycle life model of rechargeable Li-ion batteries , 2006 .

[6]  Dennis W. Dees,et al.  Application of a lithium-tin reference electrode to determine electrode contributions to impedance rise in high-power lithium-ion cells , 2004 .

[7]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part 1. Background , 2004 .

[8]  Chaoyang Wang,et al.  Modeling discharge and charge characteristics of nickel–metal hydride batteries , 1999 .

[9]  Ganesan Nagasubramanian,et al.  Accelerated power degradation of Li-ion cells , 2003 .

[10]  J. Shim,et al.  Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature , 2002 .

[11]  Ralph E. White,et al.  Analysis of capacity fade in a lithium ion battery , 2005 .

[12]  R. Spotnitz Simulation of capacity fade in lithium-ion batteries , 2003 .

[13]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and identification , 2004 .

[14]  Ralph E. White,et al.  Parameter Estimation and Life Modeling of Lithium-Ion Cells , 2008 .

[15]  Chester G. Motloch,et al.  Power fade and capacity fade resulting from cycle-life testing of Advanced Technology Development Program lithium-ion batteries , 2003 .

[16]  T. Stuart,et al.  Charge measurement circuit for electric vehicle batteries , 2002 .

[17]  Hendrik Johannes Bergveld,et al.  Battery management systems : design by modelling , 2001 .

[18]  Gan Ning,et al.  Capacity fade study of lithium-ion batteries cycled at high discharge rates , 2003 .

[19]  Joongpyo Shim,et al.  Characterization of high-power lithium-ion cells during constant current cycling: Part I. Cycle performance and electrochemical diagnostics , 2003 .

[20]  C. Armenta-Deu,et al.  Determination of an ageing factor for lead/acid batteries. 1. Kinetic aspects , 1996 .

[21]  Min Kyu Kim,et al.  Life prediction and reliability assessment of lithium secondary batteries , 2007 .

[22]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[23]  Terry Hansen,et al.  Support vector based battery state of charge estimator , 2005 .

[24]  Joan Carletta,et al.  A Battery Management System with Individual Cell Equalizers and State of Charge Observers , 2008 .

[25]  I. Bloom,et al.  Performance degradation of high-power lithium-ion cells—Electrochemistry of harvested electrodes , 2007 .

[26]  Gerald Recktenwald,et al.  Numerical Methods with MATLAB : Implementations and Applications , 2000 .

[27]  Hironori Kobayashi,et al.  Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells: I. An approach to the power fading mechanism using XANES , 2007 .