Emerging Prototype Sodium-Ion Full Cells with Nanostructured Electrode Materials.

Due to steadily increasing energy consumption, the demand of renewable energy sources is more urgent than ever. Sodium-ion batteries (SIBs) have emerged as a cost-effective alternative because of the earth abundance of Na resources and their competitive electrochemical behaviors. Before practical application, it is essential to establish a bridge between the sodium half-cell and the commercial battery from a full cell perspective. An overview of the major challenges, most recent advances, and outlooks of non-aqueous and aqueous sodium-ion full cells (SIFCs) is presented. Considering the intimate relationship between SIFCs and electrode materials, including structure, composition and mutual matching principle, both the advance of various prototype SIFCs and the electrochemistry development of nanostructured electrode materials are reviewed. It is noted that a series of SIFCs combined with layered oxides and hard carbon are capable of providing a high specific gravimetric energy above 200 Wh kg-1 , and an NaCrO2 //hard carbon full cell is able to deliver a high rate capability over 100 C. To achieve industrialization of SIBs, more systematic work should focus on electrode construction, component compatibility, and battery technologies.

[1]  K. Kang,et al.  Sodium Storage Behavior in Natural Graphite using Ether‐based Electrolyte Systems , 2015 .

[2]  Yunhong Zhou,et al.  Polyimides: promising energy-storage materials. , 2010, Angewandte Chemie.

[3]  J. Whitacre,et al.  Using Intimate Carbon to Enhance the Performance of NaTi2(PO4)3 Anode Materials: Carbon Nanotubes vs Graphite , 2014 .

[4]  J. Whitacre,et al.  Na4Mn9O18 as a positive electrode material for an aqueous electrolyte sodium-ion energy storage device , 2010 .

[5]  Marc D. Walter,et al.  Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries , 2016 .

[6]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[7]  Zhichuan J. Xu,et al.  Recent developments in electrode materials for sodium-ion batteries , 2015 .

[8]  Fayuan Wu,et al.  Sb–C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries , 2014 .

[9]  J. Whitacre,et al.  Relating Electrolyte Concentration to Performance and Stability for NaTi2(PO4)3/Na0.44MnO2 Aqueous Sodium-Ion Batteries , 2015 .

[10]  Masayoshi Ishida,et al.  A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. , 2015, Angewandte Chemie.

[11]  Docheon Ahn,et al.  Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries , 2015 .

[12]  Jia Ding,et al.  High-density sodium and lithium ion battery anodes from banana peels. , 2014, ACS nano.

[13]  Zhuobin Li,et al.  Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries , 2014, Front. Energy Res..

[14]  Tao Zhang,et al.  High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2 , 2015 .

[15]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[16]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[17]  Yeyun Wang,et al.  Contents of Previous Volumes , 1985, Spenser Studies.

[18]  Shin-ichi Nishimura,et al.  High‐Voltage Pyrophosphate Cathodes , 2012 .

[19]  Yuesheng Wang,et al.  P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries , 2015, Nature Communications.

[20]  Yishuo Wu,et al.  A nanocomposite of MoO3 coated with PPy as an anode material for aqueous sodium rechargeable batteries with excellent electrochemical performance , 2014 .

[21]  R. Hagiwara,et al.  Electrochemical performance of hard carbon negative electrodes for ionic liquid-based sodium ion batteries over a wide temperature range , 2015 .

[22]  Na Xu,et al.  Half‐Cell and Full‐Cell Applications of Highly Stable and Binder‐Free Sodium Ion Batteries Based on Cu3P Nanowire Anodes , 2016 .

[23]  A. Rai,et al.  Electrochemical properties of NaxCoO2 (x~0.71) cathode for rechargeable sodium-ion batteries , 2014 .

[24]  Yong‐Sheng Hu,et al.  Porous Li4Ti5O12 Coated with N‐Doped Carbon from Ionic Liquids for Li‐Ion Batteries , 2011, Advanced materials.

[25]  M. Armand,et al.  Building better batteries , 2008, Nature.

[26]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[27]  Jing Xu,et al.  Structure optimization of Prussian blue analogue cathode materials for advanced sodium ion batteries. , 2014, Chemical communications.

[28]  Hiroyuki Nishide,et al.  Emerging N‐Type Redox‐Active Radical Polymer for a Totally Organic Polymer‐Based Rechargeable Battery , 2009 .

[29]  Bruno Scrosati,et al.  Advanced Na[Ni0.25Fe0.5Mn0.25]O2/C-Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage. , 2014, Nano letters.

[30]  Katja Kretschmer,et al.  Sn@CNT nanopillars grown perpendicularly on carbon paper: A novel free-standing anode for sodium ion batteries , 2015 .

[31]  Yong‐Sheng Hu,et al.  Fe‐Based Tunnel‐Type Na0.61[Mn0.27Fe0.34Ti0.39]O2 Designed by a New Strategy as a Cathode Material for Sodium‐Ion Batteries , 2015 .

[32]  Lixia Yuan,et al.  Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance , 2013 .

[33]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[34]  Chao Deng,et al.  1D nanostructured sodium vanadium oxide as a novel anode material for aqueous sodium ion batteries , 2014 .

[35]  Matthew T. Dunstan,et al.  Local Structure and Dynamics in the Na Ion Battery Positive Electrode Material Na3V2(PO4)2F3 , 2014 .

[36]  Lixia Yuan,et al.  High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism , 2014 .

[37]  Nam-Soon Choi,et al.  Charge carriers in rechargeable batteries: Na ions vs. Li ions , 2013 .

[38]  Lifang Jiao,et al.  WS2 Nanowires as a High-Performance Anode for Sodium-Ion Batteries. , 2015, Chemistry.

[39]  Kosuke Nakamoto,et al.  Electrolyte dependence of the performance of a Na2FeP2O7//NaTi2(PO4)3 rechargeable aqueous sodium-ion battery , 2016 .

[40]  Y. Meng,et al.  A new O3-type layered oxide cathode with high energy/power density for rechargeable Na batteries. , 2015, Chemical communications.

[41]  Jun Chen,et al.  Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries , 2015 .

[42]  Shinichi Komaba,et al.  Negative electrodes for Na-ion batteries. , 2014, Physical chemistry chemical physics : PCCP.

[43]  Masayoshi Ishida,et al.  A High-Voltage and Ultralong-Life Sodium Full Cell for Stationary Energy Storage. , 2015, Angewandte Chemie.

[44]  Yunhui Huang,et al.  Flexible and Binder-Free Electrodes of Sb/rGO and Na3V2(PO4)3/rGO Nanocomposites for Sodium-Ion Batteries. , 2015, Small.

[45]  J. Tarascon,et al.  Insertion compounds and composites made by ball milling for advanced sodium-ion batteries , 2016, Nature Communications.

[46]  Seung M. Oh,et al.  An advanced sodium-ion rechargeable battery based on a tin-carbon anode and a layered oxide framework cathode. , 2013, Physical chemistry chemical physics : PCCP.

[47]  Bo Lin,et al.  A frogspawn-inspired hierarchical porous NaTi2(PO4)3-C array for high-rate and long-life aqueous rechargeable sodium batteries. , 2015, Nanoscale.

[48]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[49]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[50]  G. F. Ortiz,et al.  High Performance Full Sodium-Ion Cell Based on a Nanostructured Transition Metal Oxide as Negative Electrode. , 2015, Chemistry.

[51]  Ji-Hoon Jang,et al.  Cross‐Linked Chitosan as a Polymer Network Binder for an Antimony Anode in Sodium‐Ion Batteries , 2016 .

[52]  X. G. Zhang,et al.  Electrochemical behaviors of solid LiFePO4 and Li0.99Nb0.01FePO4 in Li2SO4 aqueous electrolyte , 2007 .

[53]  N. Koratkar,et al.  Defect-induced plating of lithium metal within porous graphene networks , 2014, Nature Communications.

[54]  Yitai Qian,et al.  Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes , 2016 .

[55]  Lin Gu,et al.  Air‐Stable Copper‐Based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium‐Ion Batteries , 2015, Advanced science.

[56]  J. Tarascon,et al.  Optimization of Na-Ion Battery Systems Based on Polyanionic or Layered Positive Electrodes and Carbon Anodes , 2016 .

[57]  Xu Xu,et al.  Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes , 2015 .

[58]  Yong Liu,et al.  Vacancy‐Free Prussian Blue Nanocrystals with High Capacity and Superior Cyclability for Aqueous Sodium‐Ion Batteries , 2015 .

[59]  Yong Lei,et al.  Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries , 2015 .

[60]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[61]  D. K. Kim,et al.  Effect of Electrolyte Additives on NaTi2(PO4)3-C//Na3V2O2X(PO4)2F3-2X-MWCNT Aqueous Rechargeable Sodium Ion Battery Performance , 2016 .

[62]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[63]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[64]  Yongchang Liu,et al.  Tin Nanodots Encapsulated in Porous Nitrogen‐Doped Carbon Nanofibers as a Free‐Standing Anode for Advanced Sodium‐Ion Batteries , 2015, Advanced materials.

[65]  Seung M. Oh,et al.  High Capacity O3-Type Na[Li0.05(Ni0.25Fe0.25Mn0.5)0.95]O2 Cathode for Sodium Ion Batteries , 2014 .

[66]  Yi Cui,et al.  Full open-framework batteries for stationary energy storage , 2014, Nature Communications.

[67]  Kai Zhang,et al.  FeSe2 Microspheres as a High‐Performance Anode Material for Na‐Ion Batteries , 2015, Advanced materials.

[68]  G. Cui,et al.  Anticorrosive flexible pyrolytic polyimide graphite film as a cathode current collector in lithium bis(trifluoromethane sulfonyl) imide electrolyte , 2014 .

[69]  H. Ahn,et al.  Single crystalline Na(0.7)MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. , 2013, Chemistry.

[70]  S. Passerini,et al.  Apple‐Biowaste‐Derived Hard Carbon as a Powerful Anode Material for Na‐Ion Batteries , 2016 .

[71]  Phillip K. Koech,et al.  Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials , 2012 .

[72]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[73]  Gerbrand Ceder,et al.  Challenges for Na-ion Negative Electrodes , 2011 .

[74]  Bruno Scrosati,et al.  A sodium-ion battery exploiting layered oxide cathode, graphite anode and glyme-based electrolyte , 2016 .

[75]  Tao Qian,et al.  A Sustainable Route from Biomass Byproduct Okara to High Content Nitrogen‐Doped Carbon Sheets for Efficient Sodium Ion Batteries , 2015, Advanced materials.

[76]  J. Hassoun,et al.  A rechargeable sodium-ion battery using a nanostructured Sb–C anode and P2-type layered Na0.6Ni0.22Fe0.11Mn0.66O2 cathode , 2015 .

[77]  M. Yoshio,et al.  Electrochemical behaviors of silicon based anode material , 2005 .

[78]  D. Saikia,et al.  A new highly conductive organic-inorganic solid polymer electrolyte based on a di-ureasil matrix doped with lithium perchlorate , 2011 .

[79]  Shinichi Komaba,et al.  Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2 , 2010 .

[80]  Youngsik Kim,et al.  A hybrid solid electrolyte for flexible solid-state sodium batteries , 2015 .

[81]  Yang‐Kook Sun,et al.  Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[82]  Wenping Sun,et al.  Two-Dimensional Tin Disulfide Nanosheets for Enhanced Sodium Storage. , 2015, ACS nano.

[83]  Shigeto Okada,et al.  Electrochemical Properties of NaTi2(PO4)3 Anode for Rechargeable Aqueous Sodium-Ion Batteries , 2011 .

[84]  Kai Zhang,et al.  Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries , 2015, Advanced materials.

[85]  Ilias Belharouak,et al.  Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries , 2015, Nature Communications.

[86]  S. Dou,et al.  Bismuth sulfide: A high-capacity anode for sodium-ion batteries , 2016 .

[87]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[88]  Yan Yu,et al.  High Power–High Energy Sodium Battery Based on Threefold Interpenetrating Network , 2016, Advanced materials.

[89]  D. K. Kim,et al.  High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials , 2014 .

[90]  A. Yamada,et al.  Optimized LiFePO4 for Lithium Battery Cathodes. , 2001 .

[91]  Chaojiang Niu,et al.  Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium–ion full batteries , 2016 .

[92]  W. Tremel,et al.  Extraordinary Performance of Carbon‐Coated Anatase TiO2 as Sodium‐Ion Anode , 2015, Advanced energy materials.

[93]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[94]  M. Armand,et al.  Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries , 2014 .

[95]  Zhiqiang Zhu,et al.  Highly stable and ultrafast electrode reaction of graphite for sodium ion batteries , 2015 .

[96]  Jeremy Barker,et al.  A Sodium-Ion Cell Based on the Fluorophosphate Compound NaVPO4 F , 2003 .

[97]  Yong-Sheng Hu,et al.  Prototype Sodium‐Ion Batteries Using an Air‐Stable and Co/Ni‐Free O3‐Layered Metal Oxide Cathode , 2015, Advanced materials.

[98]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[99]  M. Shaijumon,et al.  A polyimide based all-organic sodium ion battery , 2015 .

[100]  Yan Yu,et al.  Peapod‐Like Carbon‐Encapsulated Cobalt Chalcogenide Nanowires as Cycle‐Stable and High‐Rate Materials for Sodium‐Ion Anodes , 2016, Advanced materials.

[101]  Yunhong Zhou,et al.  Aqueous rechargeable alkali-ion batteries with polyimide anode , 2014 .

[102]  Tianyou Zhai,et al.  A High Rate 1.2V Aqueous Sodium-ion Battery Based on All NASICON Structured NaTi2(PO4)3 and Na3V2(PO4)3 , 2016 .

[103]  Motoaki Nishijima,et al.  Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[104]  D. K. Kim,et al.  High performance of MoS2 microflowers with a water-based binder as an anode for Na-ion batteries , 2015 .

[105]  Yitai Qian,et al.  An aqueous rechargeable sodium ion battery based on a NaMnO2–NaTi2(PO4)3 hybrid system for stationary energy storage , 2015 .

[106]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[107]  Jun Chen,et al.  All organic sodium-ion batteries with Na₄C₈H₂O₆. , 2014, Angewandte Chemie.

[108]  Jiangfeng Qian,et al.  Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry. , 2014, ChemSusChem.

[109]  Kyung Yoon Chung,et al.  NaCrO2 cathode for high-rate sodium-ion batteries , 2015 .

[110]  S. Passerini,et al.  Exploring the Low Voltage Behavior of V2O5 Aerogel as Intercalation Host for Sodium Ion Battery , 2015 .

[111]  Zonghai Chen,et al.  Nanostructured Black Phosphorus/Ketjenblack-Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. , 2016, Nano letters.

[112]  Oleg G. Poluektov,et al.  Sodium insertion in carboxylate based materials and their application in 3.6 V full sodium cells , 2012 .

[113]  M. Srinivasan,et al.  Sodium vanadium oxide: a new material for high-performance symmetric sodium-ion batteries. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[114]  Yeyun Wang,et al.  Iron-based sodium-ion full batteries , 2016 .

[115]  Yonggang Yao,et al.  Ultra‐Thick, Low‐Tortuosity, and Mesoporous Wood Carbon Anode for High‐Performance Sodium‐Ion Batteries , 2016 .

[116]  Y. Meng,et al.  Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries , 2015 .

[117]  Ya‐Xia Yin,et al.  High-Capacity Te Anode Confined in Microporous Carbon for Long-Life Na-Ion Batteries. , 2015, ACS applied materials & interfaces.

[118]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[119]  Petr V Prikhodchenko,et al.  High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries , 2013, Nature Communications.

[120]  Lin Gu,et al.  Nanoconfined Carbon‐Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium‐Ion Batteries , 2015 .

[121]  E. Fortunato,et al.  Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays , 2010 .

[122]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[123]  V. Roddatis,et al.  The mechanism of NaFePO₄ (de)sodiation determined by in situ X-ray diffraction. , 2014, Physical chemistry chemical physics : PCCP.

[124]  J. Dahn,et al.  Reducing Carbon in LiFePO4 / C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density , 2002 .

[125]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[126]  S. Adams,et al.  Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodium-Ion Batteries with Superior Rate Capability and Long Cycling Stability. , 2016, Small.

[127]  Yang Liu,et al.  Hollow K0.27MnO2 Nanospheres as Cathode for High-Performance Aqueous Sodium Ion Batteries. , 2016, ACS applied materials & interfaces.

[128]  Rémi Dedryvère,et al.  Towards high energy density sodium ion batteries through electrolyte optimization , 2013 .

[129]  Xinping Ai,et al.  A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry , 2013 .

[130]  Jay Whitacre,et al.  Microwave Synthesized NaTi2(PO4)3 as an Aqueous Sodium-Ion Negative Electrode , 2013 .

[131]  Lin Xu,et al.  Nanowire electrodes for electrochemical energy storage devices. , 2014, Chemical reviews.

[132]  Lin Xu,et al.  General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis , 2015, Nature Communications.

[133]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[134]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[135]  Zi‐Feng Ma,et al.  Large-Scale Synthesis of NaNi1/3Fe1/3Mn1/3O2 as High Performance Cathode Materials for Sodium Ion Batteries , 2016 .

[136]  A. Manthiram,et al.  A 3.4 V Layered VOPO4 Cathode for Na-Ion Batteries , 2016 .

[137]  Chao Luo,et al.  Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. , 2013, Nanoscale.

[138]  Jiwen Feng,et al.  A Honeycomb‐Layered Na3Ni2SbO6: A High‐Rate and Cycle‐Stable Cathode for Sodium‐Ion Batteries , 2014, Advanced materials.

[139]  Jay F. Whitacre,et al.  An aqueous electrolyte, sodium ion functional, large format energy storage device for stationary applications , 2012 .

[140]  R. Kataoka,et al.  Development of High Capacity Cathode Material for Sodium Ion Batteries Na0.95Li0.15(Ni0.15Mn0.55Co0.1)O2 , 2013 .

[141]  P. He,et al.  Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. , 2010, Nature chemistry.

[142]  Yong‐Sheng Hu,et al.  A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries , 2016 .

[143]  P. Hagenmuller,et al.  Etude par desintercalation electrochimique des systemes NaxCrO2 et NaxNiO2 , 1982 .

[144]  A. Manthiram,et al.  Chemical Extraction of Lithium from Layered LiCoO2 , 1996 .

[145]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[146]  T. Rojo,et al.  Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries , 2015 .

[147]  Doron Aurbach,et al.  Comparison between Na-Ion and Li-Ion Cells: Understanding the Critical Role of the Cathodes Stability and the Anodes Pretreatment on the Cells Behavior. , 2016, ACS applied materials & interfaces.

[148]  Yunhui Huang,et al.  Routes to High Energy Cathodes of Sodium‐Ion Batteries , 2016 .

[149]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[150]  Hui Xiong,et al.  Amorphous TiO2 Nanotube Anode for Rechargeable Sodium Ion Batteries , 2011 .

[151]  G. Cao,et al.  A promising cathode for Li-ion batteries: Li 3 V 2 (PO 4 ) 3 , 2016 .

[152]  Xiaodong Chen,et al.  Renewable‐Juglone‐Based High‐Performance Sodium‐Ion Batteries , 2015, Advanced materials.

[153]  J. Goodenough,et al.  Electrochemical and Chemical Properties of Na2NiO2 as a Cathode Additive for a Rechargeable Sodium Battery , 2015 .

[154]  Kang Xu,et al.  “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries , 2015, Science.

[155]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[156]  Jiwen Feng,et al.  A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode , 2013, Scientific Reports.

[157]  Hongyang Zhao,et al.  Symmetric full cells assembled by using self-supporting Na3V2(PO4)3 bipolar electrodes for superior sodium energy storage , 2016 .

[158]  Hongsen Li,et al.  An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials , 2016 .

[159]  Y. Meng,et al.  Layered SnS2‐Reduced Graphene Oxide Composite – A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material , 2014, Advanced materials.

[160]  Yuesheng Wang,et al.  Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries , 2015 .

[161]  O. Schmidt,et al.  Engineered nanomembranes for smart energy storage devices. , 2016, Chemical Society reviews.

[162]  A. Bandarenka,et al.  How simple are the models of Na intercalation in aqueous media , 2016 .

[163]  Xiqian Yu,et al.  Identifying the Critical Role of Li Substitution in P2− Na x (Li y Ni z Mn 1−y−z )O 2 (0 < x, y, z < 1) Intercalation Cathode Materials for High-Energy Na-Ion Batteries , 2014 .

[164]  Jens F. Peters,et al.  Life cycle assessment of sodium-ion batteries , 2016 .

[165]  Xiqian Yu,et al.  Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries , 2013 .

[166]  Kangli Wang,et al.  Carbon-coated Mo 3 Sb 7 composite as anode material for sodium ion batteries with long cycle life , 2016 .

[167]  Nikolay Dimov,et al.  Electrochemical and Thermal Properties of α-NaFeO2 Cathode for Na-Ion Batteries , 2013 .

[168]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[169]  Yong‐Sheng Hu,et al.  Hard Carbon Microtubes Made from Renewable Cotton as High‐Performance Anode Material for Sodium‐Ion Batteries , 2016 .

[170]  S. Dou,et al.  Sn4+xP3 @ Amorphous Sn‐P Composites as Anodes for Sodium‐Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability , 2014, Advanced materials.

[171]  Yong‐Sheng Hu,et al.  A Novel High Capacity Positive Electrode Material with Tunnel‐Type Structure for Aqueous Sodium‐Ion Batteries , 2015 .

[172]  Chaojiang Niu,et al.  An electrospun hierarchical LiV3O8 nanowire-in-network for high-rate and long-life lithium batteries , 2015 .

[173]  B. Steen,et al.  Non-aqueous electrolytes for sodium-ion batteries , 2015 .

[174]  D. K. Kim,et al.  Na3V2O2x(PO4)2F3−2x: a stable and high-voltage cathode material for aqueous sodium-ion batteries with high energy density , 2015 .

[175]  Yunhui Huang,et al.  Nanostructured alkali cation incorporated δ-MnO2 cathode materials for aqueous sodium-ion batteries , 2015 .

[176]  Wei Zhang,et al.  Biomass derived hard carbon used as a high performance anode material for sodium ion batteries , 2014 .

[177]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[178]  Yongyao Xia,et al.  Polyimide as anode electrode material for rechargeable sodium batteries , 2014 .

[179]  Chang Ming Li,et al.  Na3.12Fe2.44(P2O7)2/multi-walled carbon nanotube composite as a cathode material for sodium-ion batteries , 2015 .

[180]  Min Zhou,et al.  Nanosized Na4Fe(CN)6/C Composite as a Low‐Cost and High‐Rate Cathode Material for Sodium‐Ion Batteries , 2012 .

[181]  Yong‐Sheng Hu,et al.  Novel 1.5 V anode materials, ATiOPO4 (A = NH4, K, Na), for room-temperature sodium-ion batteries , 2016 .

[182]  Yan Yu,et al.  Self‐Supported Nanotube Arrays of Sulfur‐Doped TiO2 Enabling Ultrastable and Robust Sodium Storage , 2016, Advanced materials.

[183]  Donghan Kim,et al.  Layered Na[Ni1/3Fe1/3Mn1/3]O2 cathodes for Na-ion battery application , 2012 .

[184]  Lifang Jiao,et al.  Update on anode materials for Na-ion batteries , 2015 .

[185]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[186]  William A. Goddard,et al.  Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries , 2015 .

[187]  Viktor Hacker,et al.  Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes , 2014 .

[188]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[189]  Seung‐Taek Myung,et al.  Preparation of layered LiMnxCr1-xO2 solid solution by emulsion drying method as lithium intercalation compounds , 2002 .

[190]  J. Tu,et al.  Monolayer titanium carbide hollow sphere arrays formed via an atomic layer deposition assisted method and their excellent high-temperature supercapacitor performance , 2016 .

[191]  Zhengqiu Yuan,et al.  Three-dimensional hard carbon matrix for sodium-ion battery anode with superior-rate performance and ultralong cycle life , 2015 .

[192]  G. Cui,et al.  Flexible graphite film with laser drilling pores as novel integrated anode free of metal current collector for sodium ion battery , 2015 .

[193]  Y. Chiang,et al.  Na3Ti2(PO4)3 as a sodium-bearing anode for rechargeable aqueous sodium-ion batteries , 2014 .

[194]  Xinping Ai,et al.  3D Graphene Decorated NaTi2(PO4)3 Microspheres as a Superior High‐Rate and Ultracycle‐Stable Anode Material for Sodium Ion Batteries , 2016 .

[195]  Yajiang Yang,et al.  Gelation of the organic liquid electrolytes and the conductivities as gel electrolytes , 2007 .

[196]  Jian Yang,et al.  Double‐Walled Sb@TiO2−x Nanotubes as a Superior High‐Rate and Ultralong‐Lifespan Anode Material for Na‐Ion and Li‐Ion Batteries , 2016, Advanced materials.

[197]  Y. Chiang,et al.  Towards High Power High Energy Aqueous Sodium‐Ion Batteries: The NaTi2(PO4)3/Na0.44MnO2 System , 2013 .

[198]  Xu Xu,et al.  Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High‐Performance Symmetric Sodium‐Ion Batteries , 2014, Advanced materials.

[199]  P. Bruce,et al.  Review-Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials , 2015 .

[200]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[201]  S. Okada,et al.  Cathode properties of Na3M2(PO4) 2F3 [M = Ti, Fe, V] for sodium-ion batteries , 2013 .

[202]  Chenglong Zhao,et al.  Sodium‐Deficient O3‐Na0.9[Ni0.4Mn xTi0.6−x]O2 Layered‐Oxide Cathode Materials for Sodium‐Ion Batteries , 2016 .

[203]  N. Imanishi,et al.  Improved cycling performance of P2-type layered sodium cobalt oxide by calcium substitution , 2015 .

[204]  J. Hassoun,et al.  Characteristics of an ionic liquid electrolyte for sodium-ion batteries , 2016 .

[205]  Shigeto Okada,et al.  Cathode properties of Na2C6O6 for sodium-ion batteries , 2013 .

[206]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[207]  Hao Gong,et al.  Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. , 2013, Chemical communications.

[208]  J. Dahn,et al.  Rechargeable Lithium Batteries with Aqueous Electrolytes , 1994, Science.

[209]  Gerbrand Ceder,et al.  Synthesis and Stoichiometry of Different Layered Sodium Cobalt Oxides , 2014 .

[210]  Haegyeom Kim,et al.  Recent Progress in Electrode Materials for Sodium‐Ion Batteries , 2016 .

[211]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[212]  Haoshen Zhou,et al.  Designing high-capacity cathode materials for sodium-ion batteries , 2013 .

[213]  G. F. Ortiz,et al.  An unnoticed inorganic solid electrolyte: dilithium sodium phosphate with the nalipoite structure. , 2014, Inorganic chemistry.

[214]  Lei Zhang,et al.  Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage , 2016 .

[215]  Hiroyuki Yamaguchi,et al.  Na4Co3(PO4)2P2O7: A novel storage material for sodium-ion batteries , 2013 .

[216]  P. Balaya,et al.  α-MoO3: A high performance anode material for sodium-ion batteries , 2013 .

[217]  Ahmad Azmin Mohamad,et al.  Advances of aqueous rechargeable lithium-ion battery: A review , 2015 .

[218]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[219]  Juliette Billaud,et al.  β-NaMnO2: a high-performance cathode for sodium-ion batteries. , 2014, Journal of the American Chemical Society.

[220]  S. Mentus,et al.  Potentiodynamic and galvanostatic testing of NaFe0.95V0.05PO4/C composite in aqueous NaNO3 solution, and the properties of aqueous Na1.2V3O8/NaNO3/NaFe0.95V0.05PO4/C battery , 2016 .

[221]  J. Tarascon,et al.  Correlation Between Microstructure and Na Storage Behavior in Hard Carbon , 2016 .