Competition Pathways of Energy Relaxation of Hot Electrons through Coupling with Optical, Surface, and Acoustic Phonons

[1]  Yu Wang,et al.  Auger scattering dynamic of photo-excited hot carriers in nano-graphite film , 2022, Applied Physics Letters.

[2]  X. Duan,et al.  Macroscopic assembled graphene nanofilms based room temperature ultrafast mid‐infrared photodetectors , 2022, InfoMat.

[3]  Y. Leng,et al.  Role of the Optical–Acoustic Phonon Interaction in the Ultrafast Cooling Process of CVD Graphene , 2021, The Journal of Physical Chemistry C.

[4]  R. Ruoff,et al.  Chemical vapor deposition of graphene on thin-metal films , 2021, Cell Reports Physical Science.

[5]  Eva A. A. Pogna,et al.  Hot-Carrier Cooling in High-Quality Graphene Is Intrinsically Limited by Optical Phonons , 2021, ACS nano.

[6]  Bin Yu,et al.  A Broadband Fluorographene Photodetector , 2017, Advanced materials.

[7]  Yang Xu,et al.  Single-electron Transport in Graphene-like Nanostructures , 2016, 1601.00986.

[8]  L Piatkowski,et al.  Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating. , 2015, Nature nanotechnology.

[9]  M. Bonn,et al.  Competing ultrafast energy relaxation pathways in photoexcited graphene. , 2014, Nano letters.

[10]  D. Ralph,et al.  Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene. , 2013, Nano letters.

[11]  Amina Taleb-Ibrahimi,et al.  Exceptional ballistic transport in epitaxial graphene nanoribbons , 2013, Nature.

[12]  Xiaogan Liang,et al.  Hot phonon dynamics in graphene. , 2012, Nano letters.

[13]  A. Centeno,et al.  Photoexcitation cascade and multiple hot-carrier generation in graphene , 2012, Nature Physics.

[14]  D. Ralph,et al.  Photocurrent measurements of supercollision cooling in graphene , 2012, Nature Physics.

[15]  Libai Huang,et al.  Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy. , 2011, Nano letters.

[16]  F. Xia,et al.  High-frequency, scaled graphene transistors on diamond-like carbon , 2011, Nature.

[17]  A. Obraztsov,et al.  Broadband light-induced absorbance change in multilayer graphene. , 2011, Nano letters.

[18]  Li Shi,et al.  Low-frequency acoustic phonon temperature distribution in electrically biased graphene. , 2011, Nano letters.

[19]  Theodore B Norris,et al.  Coherent control of ballistic photocurrents in multilayer epitaxial graphene using quantum interference. , 2010, Nano letters.

[20]  Kristof Tahy,et al.  Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. , 2010, Nano letters.

[21]  R. Kaner,et al.  Honeycomb carbon: a review of graphene. , 2010, Chemical reviews.

[22]  J. Smet,et al.  Hot phonons in an electrically biased graphene constriction. , 2010, Nano letters.

[23]  Jiwoong Park,et al.  Ultrafast relaxation dynamics of hot optical phonons in graphene , 2009, 0909.4912.

[24]  Xu Du,et al.  Approaching ballistic transport in suspended graphene. , 2008, Nature nanotechnology.

[25]  Andreas Knorr,et al.  Hot electron relaxation and phonon dynamics in graphene , 2007 .

[26]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[27]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[28]  Pablo Jarillo-Herrero,et al.  Quantum supercurrent transistors in carbon nanotubes , 2006, Nature.

[29]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[30]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[31]  R. Ruoff,et al.  Synthesis of Large-Area Single-Crystal Graphene , 2021, Trends in Chemistry.